الالورة الإستثّنائيةُ للعام 2009	امتحانـات الثشهادة الثڭانويـة العامـة الفرع : إجتماع و إقتصاد	وزارة التربيةّ والتتليم العالثي المديرية العامـة للتربية دائرة الامتحاتـات
الالرقم:	مسابقة في مادة الرياضيات المدة ساعتان	عدد المسائل : اربع

> ارشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختز ان المعلومات او رسم اليبانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتز ام بترتيب المسائل الوارد في المسابقة)

I-(4 points)

The following table shows the relationship between the number of years of experience and the monthly salary, in hundred thousands of LL, of the employees in a company.

(Number of years of experience): X_{i}	2	4	6	8	10
(Salary in hundred thousands of $L L$. .): Y_{i}	4.5	6	9	10	12

1) Calculate the means \bar{X} and \bar{Y} of the two variables X and Y respectively.
2) Represent graphically the scatter plot of the points $\left(X_{i} ; Y_{i}\right)$ as well as the center of gravity $G(\bar{X} ; \bar{Y})$ in a rectangular system.
3) Determine an equation of the regression line $D_{Y / X}$, of y in terms of x, and draw it in the preceding system.
4) Suppose that the above pattern remains valid for 20 years.
a- Estimate the salary of an employee with 15 years of experience.
b- An employee started working at this company at the age of 25 .
At what age would his salary become 2000000 LL?
c- At the age of 44, this employee opens a savings account in which he deposits 500000 LL at the end of each month. The annual interest rate is 6%, compounded monthly. Calculate the total amount that would be in his account when he retires after 20 years.

II- (4 points)

Consider the sequence $\left(U_{n}\right)$ defined by $U_{0}=1600$ and by $U_{n+1}=1.05 U_{n}-40$, for every natural integer n, and let $\left(V_{n}\right)$ be the sequence defined by: $V_{n}=U_{n}-800$.

1) Prove that $\left(V_{n}\right)$ is a geometric sequence. Specify its common ratio and its first term.
2) Calculate V_{n} in terms of n. Deduce U_{n} in terms of n.
3) Let $T=V_{0}+V_{1}+\ldots+V_{10}$ and $S=U_{0}+U_{1}+\ldots+U_{10}$. Calculate T and deduce S.
4) On October 1, 2006, a school had 1600 students. Every year, before the first of October, the number of students increases by 5% and 40 students definitely leave the school.
a- Determine the number of students in this school on October 1, 2007.
b- 50% of the students in this school are in the elementary division. Knowing that the number of students in each classroom is 30 , what is the number of classrooms needed in the elementary division on October 1, 2011 ?

III- (4 points)

In order to encourage students to improve reading habits, a teacher uses two urns A and B such that: The urn A contains 6 white balls and 5 red balls.
The urn B contains 4 red balls and 7 green balls.
He proposes the following game:
The student draws at random one ball from the urn A:

- If the drawn ball is white, then the student does not get anything.
- If the ball is red, the student draws randomly a ball from urn B:
- If it is red, the student gets a gift of 10 books.
- If it is green, he again draws, without replacing the ball in B, another ball from B: If this last ball is red, then he gets 5 books; if not, he does not get anything.

Consider the following events:
F: «The student gets 10 books».
E : «The student gets 5 books».
$\mathrm{N}:$ « The student does not get anything ».

1) What is the probability of the event: «the student does not get anything for the draw from urn A».
2) Calculate the probability $p(F)$ and show that $p(E)=\frac{14}{121}$.
3) Calculate $P(N)$.
4) Designate by X the random variable that is equal to the number of books received by the student. Find the expected value $\mathrm{E}(\mathrm{X})$.

IV- (8 points)

A- Let f be the function defined on $\left[0 ;+\infty\left[\right.\right.$ by $\mathrm{f}(\mathrm{x})=(2 \mathrm{x}+1) \mathrm{e}^{-\mathrm{x}}$ and (C) be its representative curve in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

1) Calculate $\lim _{x \rightarrow+\infty} f(x)$.
2) Show that $f^{\prime}(x)=(-2 x+1) e^{-x}$.
3) Set up the table of variations of f.
4) Calculate, to the nearest $10^{-2}, f(2)$ and $f(3)$.
5) Draw (C).

B- The demand function of a certain article is modeled, in thousands of articles, by $f(x)=(2 x+1) e^{-x}$ where x is the price of an article, expressed in thousands LL. $(0.5 \leq x \leq 10)$

1) Determine the demand when the price of an article is 3000 LL.
2) Determine the elasticity of the demand in terms of the price.

3) Is the demand elastic for $x=2$? Justify the answer.
Give an economical interpretation of the value found.
4) The management of the factory that produces this article notices that the supply is modeled by the function h defined over $[0.5 ; 10]$ by $h(x)=(3 x-1) e^{-x}$.
This management wants to stock a certain quantity in advance for the high season. What are the prices that fulfill the condition $h(x)>f(x)$?

الاورة الإستثنّائية للعام 2009	امتحانـات الشههادة الثـانويـة العامـة الفرع : إجتماع و إقتصـاد	وزارة التربية والتعليم العالثي المديرية العامـة للتربية دائرة الامتحـانـات
	مسابقة في مادة الرياضيات المدة ساعتان	مشروع مـيار التصحيح

QI	Answer	M	
1	$\overline{\mathrm{X}}=6 ; \overline{\mathrm{Y}}=8.3$.	0.5	

QII	Answer	M
1	$\mathrm{V}_{\mathrm{n}+1}=\mathrm{U}_{\mathrm{n}+1}-800=1.05 \mathrm{U}_{\mathrm{n}}-840=1.05\left(\mathrm{U}_{\mathrm{n}}-800\right)=1.05 \mathrm{~V}_{\mathrm{n}}$. Thus $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence of ratio $\mathrm{q}=1.05$ and first term $\mathrm{V}_{0}=\mathrm{U}_{0}-800=1600-800=800$.	1.5
2	$\mathrm{~V}_{\mathrm{n}}=\mathrm{V}_{0} \cdot \mathrm{q}^{\mathrm{n}}=800(1.05)^{\mathrm{n}}$ and $\mathrm{U}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n}}+800=800(1.05)^{\mathrm{n}}+800$.	1.5
	$\mathrm{~T}=\mathrm{V}_{0} \cdot \frac{1-\mathrm{q}^{11}}{1-\mathrm{q}}=800 \frac{1-(1,05)^{11}}{1-1,05}=11365$	
3	$\mathrm{U}_{0}=\mathrm{V}_{0}+800 \quad ; \quad \mathrm{U}_{1}=\mathrm{V}_{1}+800 \quad-------------\quad \mathrm{U}_{10}=\mathrm{V}_{10}+800$ $\mathrm{~S}=\mathrm{T}+11 \times 800=20165$	1.5
4 a	The number of students is $: 1600(1+0.05)-40=1640$ students.	
4 b	$\mathrm{U}_{5}=800(1.05)^{5}+800=1821 .[1821 \div 2] \div 30=30.25 ;$ that is 31 classes.	1.5

QIII	Answer	M
1	The probability to get nothing from the first draw is the probability that the student	
draws a white ball from the urn A and which is $\frac{6}{11}$.	1	

2	$p(F)=\frac{5}{11} \times \frac{4}{11}=\frac{20}{121}=0.165 ; \quad p(E)=\frac{5}{11} \times \frac{7}{11} \times \frac{4}{10}=\frac{14}{121}=0.12$	3
3	The events E, F and N form a partition Hence $\mathrm{p}(\mathrm{N})=1-\mathrm{p}(\mathrm{E})-\mathrm{p}(\mathrm{F})=1-\frac{20}{121}-\frac{14}{121}=\frac{87}{121}=0.72$	2
4	The values of X are: 0,5 and 10.The expected value is : $\mathrm{E}(\mathrm{X})=0 \times 0.72+5 \times 0.12+10 \times 0.165=2.25$	1

QIV	Answer	M
A1	$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}(2 x+1) e^{-x}=\lim \left(\frac{2 x}{\left.\substack{e^{x}} e^{-x}\right)=0}\right.$ The line of equation $y=0$ is an asymptote to (C).	1.5
A2	$\mathrm{f}^{\prime}(\mathrm{x})=2\left(\mathrm{e}^{-\mathrm{x}}\right)+\left(-\mathrm{e}^{-x}\right)(2 \mathrm{x}+1)=(-2 \mathrm{x}+1) \mathrm{e}^{-x}$	1
A3	$\mathrm{f}^{\prime}(\mathrm{x})=0$ for $\mathrm{x}=\frac{1}{2}$ since $\mathrm{e}^{-\mathrm{x}}>0$	2
A4	$\mathrm{f}(2)=0.67$; f(3) $=0.34$	1
A5		1.5
B1	$\mathrm{f}(3)=0.34 ; \quad$ The demand is $0.34 \times 1000=340$ articles.	1.5
B2	$E(x)=-\mathrm{x} \times \frac{\mathrm{d}^{\prime}(\mathrm{x})}{\mathrm{d}(\mathrm{x})}=-\mathrm{x} \times \frac{(-2 \mathrm{x}+1) \mathrm{e}^{-\mathrm{x}}}{(2 \mathrm{x}+1) \mathrm{e}^{-\mathrm{x}}}=\frac{x(2 x-1)}{(2 x+1)}$	2
B3	$E(2)=-\frac{2(-4+1)}{4+1}=\frac{6}{5}=1.2>1$, then the demand is elastic for $x=2$. Since $\mathrm{E}(2)>1$. Interpretation: At a price of 2000 LL , a raise in the price by 1% will cause a decrease in demand by 1.2%.	2
B4	$\mathrm{h}(\mathrm{x})>\mathrm{f}(\mathrm{x})$ when $(3 \mathrm{x}-1) \mathrm{e}^{-\mathrm{x}}>(2 \mathrm{x}+1) \mathrm{e}^{-\mathrm{x}}$ then $3 \mathrm{x}-1>2 \mathrm{x}+1$ so, $\mathrm{x}>2$. So $2<\mathrm{x} \leq 10$. So, the price should be between 2000 and 10000 LL or equal to 10000 LL	1.5

