الاسم:	مسابقة في مادة الرياضيات	
الرقم:	المدّة: ساعتان	عدد المسائل: خمسة

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I. (3 points)

On donne cinq points distincts O, I, K, L et S tels que:

$$OI = \frac{5}{2} - \cos 60^{\circ} \qquad , \qquad OK = \frac{2 \times 10^{3} \left[\left(2 \times 10^{-1} \right)^{2} + \left(6 \times 10^{-2} \right) \right]}{5 \times 10^{-1} \times 2 \times 10^{2}}$$

$$OL = 20 \left(\frac{5}{6} - \frac{2}{15} - \frac{3}{5} \right) \text{ et} \qquad OS = \frac{(\sqrt{10} - \sqrt{2})(\sqrt{10} + \sqrt{2})}{\sqrt{16}}.$$

- 1) Calculer OI, OK, OL et OS en détaillant les calculs, et donner chaque résultat sous forme d'un entier naturel.
- 2) Démontrer que les points I, K, L et S appartiennent à un même cercle de centre O.

II. (3 points)

Voici le relevé des notes sur 60, de 20 élèves :

Notes	45	48	52	56	58	60
Effectifs	3	6	4	2	1	4
Effectifs cumulés croissants						

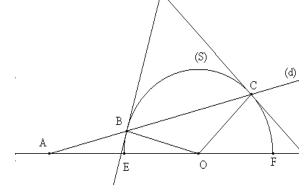
- 1) Quelle est la fréquence de la note 52 ?
- 2) Compléter le tableau par les effectifs cumulés croissants.
- 3) Tracer le polygone des effectifs cumulés croissants.
- 4) Quel est le pourcentage des élèves ayant une note supérieure à 57 ?
- 5) Déterminer la moyenne des notes des élèves.

III. (4 points)

On donne $E(x) = (2x-1)^2 + (x-2)(1-2x)$ et $F(x) = ax^2 + bx - 2$.

- 1) Factoriser E(x).
- 2) Calculer a et b pour que F(1) = 5 et F(-2) = 20.
- 3) Soit $Q(x) = 6x^2 + x 2$. Vérifier que Q(x) = (2x-1)(3x+2).
- 4) Soit $P(x) = \frac{E(x)}{O(x)}$.
 - a) Pour quelles valeurs de x, P(x) est-il défini ? Simplifier P(x).
 - b) Résoudre l'équation P(x) = 0.
 - c) L'équation $P(x) = \frac{3}{7}$ a-t- elle une solution? Justifier.

IV . (5 points)


Dans un repère orthonormé d'axes x'Ox, y'Oy où l'unité de longueur est le centimètre , on donne les points A(-2; 3), B(1;-1), C(9; 5) et la droite (d) d'équation y = 2x - 13.

- 1) Placer les points A, B et C et tracer la droite (d).
- 2) Calculer les coordonnées du point N, point d'intersection de (d) avec l'axe x'Ox.
- 3) Démontrer que le triangle ABC est rectangle en B.
- 4) Soit M le milieu de [AC]. Calculer les coordonnées de M.
- 5) Démontrer que N est le translaté de C par la translation de vecteur MB.
- 6) Démontrer que le quadrilatère BMCN est un losange.

V. (5 points)

Dans la figure ci-contre :

- (S) est un demi-cercle de centre O et de rayon R
- [EF] est le diamètre de (S)
- A est un point de (EF) tel que OA=2R
- (d) est une droite variable passant par A et coupant
 (S) en B et C

M

- Les tangentes en B et C à (S) se coupent en M.
 - 1) Justifier que (OM) est la médiatrice de [BC].
 - 2) (OM) coupe [BC] en I. Soit P le pied de la perpendiculaire menée de M à (OA).
 - a. Démontrer que les triangles OIA et OMP sont semblables.
 - **b.** Etablir la relation $OA \times OP = OM \times OI$.
 - 3) a. Soit (S') le cercle circonscrit au triangle CIM. Démontrer que (OC) est tangente à (S').
 - **b.** Utiliser deux triangles semblables pour démontrer que $OM \times OI = R^2$.
 - c. Calculer OP en fonction de R. Déduire le lieu géométrique de M lorsque (d) varie.

4) Dans cette question, on suppose que OBMC est un carré :

- a. Calculer en fonction de R les longueurs BC et MP.
- **b**. Calculer la valeur exacte de tan \widehat{MAP} .
- c. Calculer la valeur de MAPà un degré près.

مسابقة في مادة الرياضيات المدة: ساعتان

مشروع معيار التصحيح

	<u>).</u>				Co	nrigé				Note
I		Corrigé $OI = \frac{5}{2} - \frac{1}{2} = 2$ $OL = 20 \left(\frac{25 - 4 - 18}{30} \right) = 20 \left(\frac{3}{30} \right) = 2. \text{ OS} = \frac{\left(\sqrt{10} - \sqrt{2} \right) \left(\sqrt{10} + \sqrt{2} \right)}{\sqrt{16}} = \frac{10 - 2}{4} = 2.$ $OK = \frac{2 \times 10^3 \left[\left(4 \times 10^{-2} \right) + \left(6 \times 10^{-2} \right) \right]}{5 \times 2 \times 10} = \frac{2 \times 10^3 \left[10^{-2} \left(4 + 6 \right) \right]}{10^2} = \frac{2 \times 10 \times 10^{-1}}{1} = 2.$ $OI = OK = OL = OS = 2 \text{ d'où les points I , K , L et S appartiennent à un même cercle}$							2.50	
	2	OI = OK = OL = de centre O et de	= OS $=$	2 d'où 1	es points I	, K , L et S	S appartien	nnent à un	même cercle	0.50
	1	(Fréquence de 52) = $\frac{4}{20}$ = 0,2						0.50		
	2	Notes Effectifs Effectifs cumulés croissants	45 3 3	48 6 9	52 4 13	56 2 15	58 1 16	60 4 20		0.50
п	3	20 16 15 13 9 3 45 48 52 56 58 60							0.75	
	4	$\frac{5}{20} \times 100 = 25\%$								0.75
	5	$\frac{z}{x} = 52,05.$							0.50	
	1	E(x) = (2x-1)(2x								0.50
	2	F(1) = a + b - 2			(-2) = 4a-2	2b-2 = 20;	alors $a = 6$	6 et b = 1		1.25
	3	(2x-1)(3x+2)=								0.50
III	4a	a) $P(x) = \frac{(2x-1)(x+1)}{(2x-1)(3x+2)}, x \neq \frac{1}{2} \text{ et } x \neq -\frac{2}{3}; P(x) = \frac{x+1}{3x+2}$					0.50			
	4b	4b $x=-1$						0.50		
	4c							0.75		
IV	1	Figure A,B et C pour la droite (d)					A 2	M N	c c	1.25

	2	N (6,5; 0).	0.25							
	3	ABC est un triangle rectangle en B car								
	4	M (3,5; 4).								
	5		1							
	6	$\overrightarrow{MB} = \overrightarrow{CN}$, donc BMCN est un parallélogramme .Comme ABC est un triangle rectangle alors [BM] est la médiane relative à l'hypoténuse d'où $BM = \frac{AC}{2} = MC$, par suite BMCN est un losange.								
	1	(OM) est la médiatrice de [BC] car								
	2a	Θ IA = Θ PM = 90° et Θ POI angle commun donc	0.50							
	2b	$\frac{OM}{OA} = \frac{MP}{AI} = \frac{OP}{OI} ; donc OA \times OP = OM \times OI$	0.50							
	3a	Le cercle circonscrit au triangle rectangle MCI est de diamètre [MC] (MC) \perp (OC) donc (OC) est tangente à (S')	0.50							
	3b	Les deux triangles OCI et OCM sont semblables car : Θ CM = Θ IC = 90° et Θ OI angle commun. $\frac{OI}{OC} = \frac{OC}{OM}$. Alors $OM \times OI = OC^2 = R^2$.	0.75							
	3c	$OM \times OI = OA \times OP = R^2$, alors $OP = \frac{R^2}{2R} = \frac{R}{2}$. O, A et P sont fixes donc Le lieu de M est la perpendiculaire en P a [OA].								
	4a	BC = OM = $R\sqrt{2}$. $MP^2 = OM^2 - OP^2 = 2R^2 - \frac{R^2}{4} = \frac{7R^2}{4}$; $MP = \frac{R\sqrt{7}}{2}$	0.75							
V	4b	$\tan MAP = \frac{MP}{AP} = \frac{\sqrt{7}}{3}.$	0.25							
	4c									
		E P O								