دورة سنة 2009 الإستثنائية	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة: ساعة واحدة	

This exam consists of three obligatory exercises in two pages. Non- programmable calculators are allowed.

First exercise Roles of a converging lens (7 points)

The aim of this exercise is to show that a converging lens may have different roles. For this we consider a converging lens (L) of focal length f = 4 cm and an object AB of height AB = 2 cm, perpendicular at A to the optical axis of the lens.

I- First experiment

The object AB is placed at a distance OA = 6 cm from the optical center O of (L). The diagram below shows (L), its optical axis, its two foci F and F' and the object AB.

		+			
	В				
	A	F	0	F'	
2 cm					_

- 1) Reproduce, on the graph paper and with the same scale, the above figure.
- **2**) Draw, on the reproduced figure, the image A_1B_1 of AB given by (L).
- **3**) Give the nature and the direction of A_1B_1 .
- 4) Determine graphically the height and the position of the image A_1B_1 .

II- Second experiment

The object AB is now placed at a distance OA = 2 cm from the optical center of the lens.

- 1) Construct, on a new diagram and with the same previous scale, the image A_2B_2 of AB given by (L).
- **2**) Give the nature and the direction of A_2B_2 .
- **3**) Determine graphically the height and the position of the image A_2B_2 .

III- Conclusion

In the first experiment, the lens may be used as the objective of a slide projector allowing us to obtain a magnified image on a screen. What is the role of the lens in the second experiment? Justify.

Second exercise Study of an electric circuit (7 points)

The electric circuit of figure 1 is formed of:

- a generator (G) that maintains across its terminals a constant voltage $U_{G}=9\ V$;
- a resistor (D₁) of resistance $R_1 = 4 \Omega$;
- a lamp (L) carrying the indications (6 V; 3 W);
- a resistor (D).
- 1) What does each of the indications carried by (L) represent?
- **2)** (L) functions normally.
 - **a**) Calculate the value of the current I_2 carried by (L).
 - **b**) What is the value of the voltage U_{D1} across (D_1) ?
 - **c**) Deduce the value of the current I_1 carried by (D_1) .
- 3) a) By applying the law of addition of voltages, calculate the value of the voltage U_D across (D).
 - **b**) The characteristic current-voltage of (D) is that of figure 2. Determine, graphically, the value of the current I through (D).
- **4)** By comparing I and the sum $(I_1 + I_2)$ tell what law of electricity is thus verified.

Fig. 2

Third exercise Determination of the density of an alcohol (6 points)

In order to determine the density of an alcohol, we take a solid (S) suspended from the free end of a spring balance, and two containers: one containing water and the other alcohol. Take g = 10 N/kg.

I- Real weight of (S)

(S) is in equilibrium in air. The spring balance indicates 8 N. This indication represents the value P of the real weight of (S). Why?

II- Volume of (S)

We immerse (S) completely in water of density $\rho = 1000 \text{ kg/m}^3$ (fig. 1). The spring balance then indicates 7 N.

- 1) What does the indication of the spring balance represent?
- 2) Calculate the value F of the Archimedes up thrust exerted by water on (S).
- **3**) Deduce the volume V of (S).

III- Density of the alcohol

Now, (S) is completely immersed in alcohol (fig. 2). The spring balance indicates in this case 7.2 N.

- 1) Calculate the value F' of Archimedes up thrust exerted by the alcohol on (S).
- 2) Deduce the value ρ' of the density of this alcohol.

دورة سنة 2009 الإستثنائية	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
	مسابقة في مادة الفيزياء المدة: ساعة واحدة	مشروع معيار التصحيح

Part of the Q	Answer	Mark		
the Q	First question (7 points)			
I. 1)	Reproduction	0.5		
1. 1)	- Trace of the 1 st ray. (0.5)			
I. 2)	1			
	- Construction of A_1B_1 (0.5)			
	Nature : A_1B_1 is a real image (0.5)			
I. 3)	direction : A_1B_1 is inverted with respect to AB (0.5)			
T (1)	$A_1B_1 = 4 \text{ cm } (0.25)$			
I. 4)	Position : at 12 cm from L (0.25)			
	- Trace of the 1 st particular ray. ().5)			
II. 1)	- Trace of the 2^{nd} particular ray (0.5).	1.5		
	- Construction of A_2B_2 (0.5)			
II. 2)	Nature : A_2B_2 is a virtual image (0.25)			
11. 2)	Direction : A ₂ B ₂ is erect with respect to AB (0.25)			
II. 3)	3) $A_2B_2 = 4 \text{ cm } (0.25)$			
11. 3)	Position : at 4 cm from L (0.25)	0.50		
	Role of a magnifier (0.5)			
III.	Since A_2B_2 is a virtual image, erect with respect to the object and larger than the object	1		
	(0.5)			
	Second exercise (7 points)			
1.a	6 V: rated voltage	1		
	3 W: rated power			
2.a	$P = U_L \times I_2 \qquad \dots \qquad $	1		
	$I_2 = 0.5 A$ (0.5)	0.50		
2.b	$U_{D1} = U_L = 6 V.$	0.50		
	$U_{D1} = R_1 \times I_1$ (0.5)	1		
2.c		1		
	$I_1 = 1.5 \text{ A} \dots $	1		
3. a	$U_{G} = U_{D1} + U_{D} $ (0.5) $U_{D} = 9 - 6 = 3 V(0.5)$			
3.b	Reading the graph gives $I = 2 A$ for $U_D = 3 V$.	0.50		
	$I_1 + I_2 = 0.5 + 1.5 = 2 \text{ A and } I = 2 \text{ A then } I = I_S = I_1 + I_2 (1)$	2.0		
4	The verified law is the law of addition of currents (1)			
<u> </u>	Third exercise (6 points)			
.	Since a spring balance indicates, at equilibrium and in air, the real weight of the suspended			
I.	body.	1		
II. 1)	The indication of the spring balance represents the apparent weight of the solid (S) in water.	1		
	The Archimedes up thrust is given by : $F = Wr - Wa$ (0.5)	1		
II. 2)		1		
	F = 8 - 7 = 1N (0.5) The Archimedes up thrust is also given by : F=p.v.g (0.5)			
II. 3)	$V = \frac{F_{water}}{\rho_{water} \times g} = \frac{1}{1000 \times 10} \text{thus } V = 10^{-4} \text{ m}^3 (0.5)$	1		
- /	$\mathbf{v} = \rho_{water} \times g 1000 \times 10 \text{thus } \mathbf{v} = 10 \text{m}^{\circ}(0.5)$			
	The Archimedee up threat exerted by clean $L = W_{\rm T} = W_{\rm T}$			
III. 1)	III. 1) The Archimedes up thrust exerted by alcohol : $F' = Wr - W'a$			
	F' = 8 - 7,2 = 0.8 N.	1		
III. 2)	$F' = \rho'.g.v \rightarrow \rho' = 0.8 / 10^{-4} \times 10 = 800 \text{ kg} / \text{m}^3$	1		