دورة سنة 2009 الإستثّنـيائية	الثشهادة المتّوسطة	وزارة التربية والتُعليم العالي المديرية العامـة للتربية دائرة الامتحانات
الرقم:	مسابقةّة في مـادة الفيزيـاء المدة: سـاعة واحدة	

This exam consists of three obligatory exercises in two pages. Non- programmable calculators are allowed.

First exercise Roles of a converging lens (7 points)

The aim of this exercise is to show that a converging lens may have different roles. For this we consider a converging lens (L) of focal length $f=4 \mathrm{~cm}$ and an object $A B$ of height $A B=2 \mathrm{~cm}$, perpendicular at A to the optical axis of the lens.

I- First experiment

The object AB is placed at a distance $\mathrm{OA}=6 \mathrm{~cm}$ from the optical center O of (L).
The diagram below shows (L), its optical axis, its two foci F and F^{\prime} and the object AB.

1) Reproduce, on the graph paper and with the same scale, the above figure.
2) Draw, on the reproduced figure, the image $A_{1} B_{1}$ of $A B$ given by (L).
3) Give the nature and the direction of $A_{1} B_{1}$.
4) Determine graphically the height and the position of the image $A_{1} B_{1}$.

II- Second experiment

The object AB is now placed at a distance $\mathrm{OA}=2 \mathrm{~cm}$ from the optical center of the lens.

1) Construct, on a new diagram and with the same previous scale, the image $A_{2} B_{2}$ of $A B$ given by (L).
2) Give the nature and the direction of $\mathrm{A}_{2} \mathrm{~B}_{2}$.
3) Determine graphically the height and the position of the image $A_{2} B_{2}$.

III- Conclusion

In the first experiment, the lens may be used as the objective of a slide projector allowing us to obtain a magnified image on a screen. What is the role of the lens in the second experiment? Justify.

Second exercise Study of an electric circuit (7 points)

The electric circuit of figure 1 is formed of:

- a generator (G) that maintains across its terminals a constant voltage $\mathrm{U}_{\mathrm{G}}=9 \mathrm{~V}$;
- a resistor (D_{1}) of resistance $\mathrm{R}_{1}=4 \Omega$;
- a lamp (L) carrying the indications $(6 \mathrm{~V} ; 3 \mathrm{~W})$;
- a resistor (D).

1) What does each of the indications carried by (L) represent?

2) (L) functions normally.
a) Calculate the value of the current I_{2} carried by (L).
b) What is the value of the voltage $U_{D 1}$ across $\left(D_{1}\right)$?
c) Deduce the value of the current I_{1} carried by $\left(\mathrm{D}_{1}\right)$.
3) a) By applying the law of addition of voltages, calculate the value of the voltage U_{D} across (D).
b) The characteristic current-voltage of (D) is that of figure 2 . Determine, graphically, the value of the current I through (D).
4) By comparing I and the sum $\left(I_{1}+I_{2}\right)$ tell what law of electricity is thus verified.

Third exercise Determination of the density of an
Fig. 2 alcohol (6 points)

In order to determine the density of an alcohol, we take a solid (S) suspended from the free end of a spring balance, and two containers: one containing water and the other alcohol. Take $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.

I- Real weight of (S)

(S) is in equilibrium in air. The spring balance indicates 8 N .
This indication represents the value P of the real weight of (S). Why?

II- Volume of (S)

We immerse (S) completely in water of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ (fig. 1). The spring balance then indicates 7 N .

1) What does the indication of the spring balance represent?
2) Calculate the value F of the Archimedes up thrust exerted by water on (S).
3) Deduce the volume V of (S).

III- Density of the alcohol

Figure 1

Figure 2

Now, (S) is completely immersed in alcohol (fig. 2). The spring balance indicates in this case 7.2 N .

1) Calculate the value F^{\prime} of Archimedes up thrust exerted by the alcohol on (S).
2) Deduce the value $\boldsymbol{\rho}^{\prime}$ of the density of this alcohol.

دورة سنة 2009 الإستثّائية	الثهادة المتوسطة	وزارة التربية والتّليم العالي المديرية العامة للتربية دائرة الامتحانات
	مسابقة في مادة الفيزياء المدة: ساعة واحدة	مشروع ميلار التصحيح

Part of the \mathbf{Q}	Answer	Mark
	First question (7 points)	
I. 1)	Reproduction	0.5
I. 2)	$\begin{aligned} & \text { - Trace of the } 1^{\text {st }} \text { ray. }(0.5) \\ & \text { - Trace of the } 2^{\text {nd }} \text { ray. (0.5) } \\ & \text { - Construction of } \mathrm{A}_{1} \mathrm{~B}_{1}(0.5) \end{aligned}$	1.5
I. 3)	Nature : $\mathrm{A}_{1} \mathrm{~B}_{1}$ is a real image (0.5) direction : $\mathrm{A}_{1} \mathrm{~B}_{1}$ is inverted with respect to AB (0.5)	1
I. 4)	$\mathrm{A}_{1} \mathrm{~B}_{1}=4 \mathrm{~cm}(0.25)$ Position : at 12 cm from $\mathrm{L}(0.25)$	0.50
II. 1)	Trace of the $1^{\text {st }}$ particular ray. ().5) Trace of the $2^{\text {nd }}$ particular ray (0.5). - Construction of $\mathrm{A}_{2} \mathrm{~B}_{2}$ (0.5)	1.5
II. 2)	Nature : $\mathrm{A}_{2} \mathrm{~B}_{2}$ is a virtual image (0.25) Direction : $\mathrm{A}_{2} \mathrm{~B}_{2}$ is erect with respect to $\mathrm{AB}(0.25)$	0.50
II. 3)	$\mathrm{A}_{2} \mathrm{~B}_{2}=4 \mathrm{~cm}(0.25)$ Position : at 4 cm from L (0.25)	0.50
III.	Role of a magnifier (0.5) Since $A_{2} B_{2}$ is a virtual image, erect with respect to the object and larger than the object (0.5)	1
	Second exercise (7 points)	
1.a		1
2.a	$\begin{array}{\|l} \hline \mathrm{P}=\mathrm{U}_{\mathrm{L}} \times \mathrm{I}_{2} \ldots \\ \mathrm{I}_{2}=0.5 \mathrm{~A} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \end{array}$	1
2.b	$\mathrm{U}_{\mathrm{D} 1}=\mathrm{U}_{\mathrm{L}}=6 \mathrm{~V}$.	0.50
2.c		1
3.a		1
3.b	Reading the graph gives $\mathrm{I}=2 \mathrm{~A}$ for $\mathrm{U}_{\mathrm{D}}=3 \mathrm{~V}$.	0.50
4	$\mathrm{I}_{1}+\mathrm{I}_{2}=0.5+1.5=2 \mathrm{~A}$ and $\mathrm{I}=2 \mathrm{~A}$ then $\mathrm{I}=\mathrm{I}_{\mathrm{S}}=\mathrm{I}_{1}+\mathrm{I}_{2}(1)$ The verified law is the law of addition of currents (1)	2.0
	Third exercise (6 points)	
I.	Since a spring balance indicates, at equilibrium and in air, the real weight of the suspended body.	1
II. 1)	The indication of the spring balance represents the apparent weight of the solid (S) in water.	1
II. 2)	The Archimedes up thrust is given by $\begin{aligned}: \mathrm{F}=\mathrm{Wr}-\mathrm{Wa} \quad(0.5) \\ \mathrm{F}=8-7=1 \mathrm{~N} \quad(0.5)\end{aligned}$	1
II. 3)	The Archimedes up thrust is also given by : $\mathrm{F}=\rho . \mathrm{v} . \mathrm{g}$ (0.5) $\mathrm{V}=\frac{F_{\text {water }}}{\rho_{\text {water }} \times g}=\frac{1}{1000 \times 10} \text { thus } \mathrm{V}=10^{-4} \mathrm{~m}^{3}(0.5)$	1
III. 1)	The Archimedes up thrust exerted by alcohol $\begin{aligned} & \mathrm{F}^{\prime}=\mathrm{Wr}-\mathrm{W}^{\prime} \mathrm{a} \\ & \mathrm{~F}^{\prime}=8-7,2=0.8 \mathrm{~N} . \end{aligned}$	1
III. 2)	$\mathrm{F}^{\prime}=\rho^{\prime}$.g.v $\rightarrow \rho^{\prime}=0.8 / 10^{-4} \times 10=800 \mathrm{~kg} / \mathrm{m}^{3}$	1

