الدورة العادية	امتحانات الثشهادة الثلانوية اللعامة الفرع : علوم عامة	وزارة التربية و التّعليم العالي المديرية العامة للتربية دائرة الامتحانات
الرقم:	مسابقة في مادة الفيزياء المدة ثلاث ساعات	

This exam is formed of four exercises in four pages numbered from 1 to 4. The use of non-programmable calculator is recommended

First Exercise: ($71 / 2$ points)

Torsion pendulum

The object of this exercise is to determine the moment of inertia I of a homogeneous rod AB with respect to an axis perpendicular to the rod at its midpoint and the torsion constant C of a wire OO^{\prime} of negligible mass.
The rod has a mass M and a length $A B=\ell=60 \mathrm{~cm}$.
A torsion pendulum $[\mathrm{P}]$ is obtained by fixing the mid-point of $A B$ to one end O of the wire while the other end O^{\prime} is fixed to a support . The rod is shifted, from its equilibrium position, by a small angle θ_{m} in the horizontal plane and it is released from rest at an instant
 $\mathrm{t}_{0}=0$.The rod thus may turn in the horizontal plane about an axis (Δ) passing through OO'.
At an instant t during motion, the angular abscissa of the rod is θ and its angular velocity is $\dot{\theta}=\frac{\mathrm{d} \theta}{\mathrm{dt}}$
The horizontal plane containing the rod is taken as a gravitational potential energy reference.
We neglect any force of friction and take $\pi^{2}=10$.
A - Theoretical study

1) Give, at the instant t, the expression of the mechanical energy M.E of the system [(P), Earth] in terms of I, C, θ and $\dot{\theta}$.
2) a) Write the expression of M.E when $\theta=\theta_{\mathrm{m}}$
b) Determine, in terms of $\mathrm{C}, \theta_{\mathrm{m}}$ and I , the expression of the angular speed of $[\mathrm{P}]$ as it passes through its equilibrium position .
3) Derive the second order differential equation in θ that governs the motion of $[\mathrm{P}]$.
4) Deduce that the motion of $[\mathrm{P}]$ is sinusoidal.
5) Determine the expression of the proper period T_{1} of the pendulum in terms of I and C.

B - Experimental study

1) By means of a stopwatch, we measure the duration t_{1} of 20 oscillations and we obtain $t_{1}=20 \mathrm{~s}$. Determine the relation between I and C .
2) At each extremity of the rod we fixe a particle of mass $m=25 \mathrm{~g}$. We thus obtain a new torsion pendulum [P^{\prime}] whose motion is also rotational sinusoidal of proper period T_{2}.
a) Determine the moment of inertia I' of the system (rod + particles) with respect to the axis (Δ) in terms of I, m, and ℓ.
b) Write down the expression of T_{2} in terms of $\mathrm{I}, \mathrm{C}, \mathrm{m}$ and ℓ.
c) By means of a stopwatch, we measure the duration t_{2} of 20
 oscillations and we obtain $\mathrm{t}_{2}=40 \mathrm{~s}$.
Find a new relation between I and C.
3) Calculate the values of I and C.

Second Exercise: (7 1 $1 / 2$ points)

The phenomenon of self-induction

The set up represented by the adjacent figure consists of an ideal generator of emf $E=12 \mathrm{~V}$, a coil of resistance $r=10 \Omega$ and of inductance $L=40 \mathrm{mH}$, a resistor of resistance $\mathrm{R}=40 \Omega$ and two switches K_{1} and K_{2}.
\boldsymbol{A} - At the instant $\mathrm{t}_{0}=0$, we close the switch K_{1} and we leave K_{2} open.
At an instant t , the circuit carries a current i_{1} in the transient state.

1) Derive the differential equation that governs the variation of i_{1} as a function of time.
2) I_{0} is the current in the steady state. Determine the expression of I_{0} in terms of E, r and R and calculate its value.
3) The solution of the differential equation is of the form: $i_{1}=I_{0}\left(1-e^{\frac{-t}{\tau}}\right)$.
a) Determine the expression of τ in terms of L, r and R and calculate its value.
b) Give the physical significance of τ.
4) a) Determine the expression of the self-induced emf e_{1} as a function of time t.
b) Calculate the algebraic value of e_{1} at the instant $t_{0}=0$.
\boldsymbol{B} - After a few seconds, the steady state being reached, we open K_{1} and we close K_{2} at the same instant. We consider the instant of closing K_{2} as a new origin of time $t_{0}=0$.
The circuit (L, R, r) thus carries an induced current i_{2} at an instant t.
5) Determine the direction of i_{2}.
6) Derive the differential equation that governs the variation of i_{2} as a function of time .
7) Verify that $i_{2}=I_{0} \mathrm{e}^{\frac{-t}{\tau}}$ is the solution of this differential equation.
8) Calculate the algebraic value of the self-induced emf e_{2} at the instant $t_{0}=0$.
\boldsymbol{C} - Compare e_{1} and e_{2} and deduce the role of the coil in each of the two previous circuits.

Third Exercise: ($\mathbf{7}^{1} / 2$ points)

Characteristics of an ($\mathrm{R}, \mathrm{L}, \mathrm{C}$) circuit

In order to determine the characteristics of an (R, L, C) circuit, we connect the circuit represented in figure 1. This circuit is formed of a resistor of resistance $R=650 \Omega$, a coil of inductance L and of negligible resistance and a capacitor of capacitance C, all connected in series across a function generator (LFG) delivering across its terminals a sinusoidal alternating voltage u_{g} of the form:
$\mathrm{u}_{\mathrm{g}}=\mathrm{u}_{\mathrm{AM}}=\mathrm{U}_{\mathrm{m}} \cos (2 \pi \mathrm{f}) \mathrm{t}$.

Fig. 1
\boldsymbol{A}-The frequency of the voltage u_{G} is adjusted on the value f_{1}.
We display, on the screen of an oscilloscope, the variations, as a function of time, of the voltage u_{AM} across the generator on the channel $\left(\mathrm{Y}_{1}\right)$ and the voltage u_{DM} across the resistor on the channel $\left(\mathrm{Y}_{2}\right)$.
The waveforms obtained are represented in figure 2.
Vertical sensitivity on both channels is: 2 V/div.
Horizontal sensitivity is: $0.1 \mathrm{~ms} /$ div.

1) Redraw figure (1) showing on it the connections of the oscilloscope.
2) Referring to the waveforms, determine:
a) The value of the frequency f_{1}.
b) The absolute value of φ_{1} the phase difference between u_{AM} and u_{DM}.
3) The current i carried by the circuit has the form:
$\mathrm{i}=\mathrm{I}_{\mathrm{m}} \cos \left(2 \pi \mathrm{f}_{1} \mathrm{t}-\varphi_{1}\right)$.
a) Write down the expressions of the voltages: u_{AB}, $u_{B D}$ and $u_{D M}$ as a function of time.

Fig. 2
b) The relation: $u_{A M}=u_{A B}+u_{B D}+u_{D M}$ is valid for any
instant t . Show, by giving t a particular value, that:

$$
\tan \varphi_{1}=\frac{\mathrm{L}\left(2 \pi \mathrm{f}_{1}\right)-\frac{1}{\mathrm{C}\left(2 \pi \mathrm{f}_{1}\right)}}{\mathrm{R}}
$$

\boldsymbol{B} - Starting from the value f_{1}, we decrease continuously the frequency f . We notice that, for $\mathrm{f}_{0}=500 \mathrm{~Hz}$ the circuit is the seat a of current resonance phenomenon.

Deduce from what preceded a relation between L, C and f_{0}.
\boldsymbol{C} - We keep decreasing the frequency f . For a value f_{2} of f we find that the phase difference between u_{AM} and u_{DM} is φ_{2} such that $\varphi_{2}=-\varphi_{1}$.

1) Determine the relation among f_{1}, f_{2} and f_{0}.
2) Deduce the value of f_{2}.
\boldsymbol{D} - Deduce from what is preceded the values of L and C .

Fourth Exercise: ($7^{1} 1 / 2$ points)

Energy levels of the hydrogen atom

The energies of the various levels of the hydrogen atom are given by the relation:
$E_{n}=-\frac{E_{0}}{n^{2}}$, where E_{0} is a positive constant and n is a positive whole number.

Given:

Planck's constant $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s} ; 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} ; 1 \mathrm{~nm}=10^{-9} \mathrm{~m}$.
Speed of light in vacuum: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

1) a) The energy of the hydrogen atom is quantized. What is meant by "quantized energy"?
b) Explain why the absorption or emission spectrum of hydrogen consists of lines.
2) A hydrogen atom, initially excited, undergoes a downward transition from the energy level E_{2} to the energy level E_{1}. It then emits the radiation of wavelength in vacuum: $\lambda_{2 \rightarrow 1}=1.216 \times 10^{-7} \mathrm{~m}$.
Determine, in J , the value:
a) of the constant E_{0};
b) of the ionization energy of the hydrogen atom taken in its ground state.
3) For hydrogen, we define several series that are named after the researchers who contributed in their study . Among these series we consider that of Balmer, which is characterized by the downward transitions from the energy level $E_{p}>E_{2}(p>2)$ to the energy level $E_{2}(n=2)$.
To each transition $p \rightarrow 2$ corresponds a line of wave $\lambda_{p \rightarrow 2}$.
a) Show that $\lambda_{\mathrm{p} \rightarrow 2}$, expressed in nm , is given by the relation:. $\frac{1}{\lambda_{\mathrm{p} \rightarrow 2}}=1.096 \times 10^{-2}\left[\frac{1}{4}-\frac{1}{\mathrm{p}^{2}}\right]$
b) The analysis of the emission spectrum of the hydrogen atom shows four visible lines. We consider the three lines $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}$ and H_{γ} of respective wavelengths in vacuum are $\lambda_{\alpha}=656.28 \mathrm{~nm} ; \lambda_{\beta}=486.13 \mathrm{~nm}$ and $\lambda_{\gamma}=434.05 \mathrm{~nm}$.
To which transition does each of these radiations correspond?
c) Show that the wavelengths of the corresponding radiations tend, when $\mathrm{p} \rightarrow \infty$, towards a limit λ_{0}. whose value is to be calculated.
4) Balmer, in 1885 , knew only the lines of the hydrogen atom that belong to the visible spectrum. He wrote the formula: $\lambda=\mathrm{K} \frac{\mathrm{p}^{2}}{\mathrm{p}^{2}-4}$, where K is a positive constant and p a positive whole number.
Determine the value of K using the numerical values and compare its value with that of λ_{0}.
First exercise (7.5 points)
$\mathbf{A}-\mathbf{1}) \mathrm{ME}=\mathrm{KE}+\mathrm{P} . \mathrm{E}_{\mathrm{g}}+\mathrm{PE}_{\mathrm{e}}=1 / 2 \mathrm{I} \theta^{\prime 2}+0+1 / 2 \mathrm{C} \theta^{2}$
5) a) for max. deviation, $\theta=\theta_{\mathrm{m}}$ and $\theta^{\prime}=0$.
$\mathrm{E}_{\mathrm{m}}=1 / 2 \mathrm{C} \theta^{2}{ }_{m} \quad(1 / 2)$
b) At equilibrium position, $\mathrm{E}_{\mathrm{m}}=1 / 2 \mathrm{I} \theta_{\mathrm{m}}{ }^{2}$

$$
\begin{equation*}
\Rightarrow \theta^{\prime}= \pm \theta_{\mathrm{m}} \sqrt{\frac{\mathrm{C}}{\mathrm{I}}} \tag{3/4}
\end{equation*}
$$

3) M.E is conserved since no friction thus the derivative of M.E w.r.t time is zero

$$
\begin{equation*}
\text { I } \theta^{\prime} \theta^{\prime \prime}+\mathrm{C} \theta \theta^{\prime}=0, \quad \theta^{\prime} \neq 0 \quad \text { thus } \quad \theta^{\prime \prime}+\frac{\mathrm{C}}{\mathrm{I}} \theta=0 \tag{3/4}
\end{equation*}
$$

4) Equation has the form $\theta^{\prime \prime}+\omega^{2} \theta=0$

It has a sinusoidal solution where $\omega^{2}=\frac{C}{I}:(1 / 4)$
5) $\omega^{2}=\frac{C}{I}$
$\omega=\frac{2 \pi}{\mathrm{~T}}$ thus $\mathrm{T}_{1}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{C}}}$
$\mathbf{B}-\mathbf{1}) \mathrm{t}_{1}=20 \mathrm{~T}_{1}=20$ s thus $\mathrm{T}_{1}=1=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{C}}}$
and $40 \frac{\mathrm{I}}{\mathrm{C}}=1$ then $\mathrm{C}=40 \mathrm{I}$
2) a) $I^{\prime}=I+2 m\left(\frac{\ell}{2}\right)^{2}=I+m \frac{\ell^{2}}{2}=I+0.0045$
b) Same law of motion thus $T_{2}=2 \pi \sqrt{\frac{I^{\prime}}{C}}=2 \pi \sqrt{\frac{I+\frac{m \ell^{2}}{2}}{C}} \quad(1 / 2)$
c) $\mathrm{T}_{2}=2$ thus $10 \frac{\mathrm{I}^{\prime}}{\mathrm{C}}=1$ or $\mathrm{C}=10 \mathrm{I}^{\prime}=10(\mathrm{I}+0.0045)=10 \mathrm{I}+0.045(3 / 4)$
3) $\mathrm{C}=40 \mathrm{I}=10 \mathrm{I}+0.045 \Rightarrow \mathrm{I}=1.5 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and $\mathrm{C}=0.06 \mathrm{~N} \times \mathrm{m} \quad(3 / 4)$

Second exercise (7.5 points)
A-1) $E=r i_{1}+L \frac{d i_{1}}{d t}+R i_{1} \Rightarrow E=(r+R) i_{1}+L \frac{d i_{1}}{d t} . \quad(1 / 2)$
2) When the steady state mode is established, i_{1} becomes constant and $\frac{d i_{1}}{d t}=0$;

$$
\text { the current is then } I_{0} \text { such that: } E=(r+R) I_{0} \Rightarrow I_{0}=\frac{E}{R+r} \text {. }
$$

$$
\begin{equation*}
\mathrm{I}_{0}=\frac{12}{40+10}=0.24 \mathrm{~A} \tag{1}
\end{equation*}
$$

3) a) $\frac{\mathrm{di}_{1}}{\mathrm{dt}}=\mathrm{I}_{0} \tau\left(\mathrm{e}^{\frac{-\mathrm{t}}{\tau}}\right) \Rightarrow \mathrm{E}=(\mathrm{r}+\mathrm{R}) \mathrm{I}_{0}\left(1-\mathrm{e}^{\frac{-\mathrm{t}}{\tau}}\right)+\mathrm{LI}_{0} \tau\left(\mathrm{e}^{\frac{-\mathrm{t}}{\tau}}\right)$
$\Rightarrow \mathrm{L} / \tau=(\mathrm{r}+\mathrm{R}) \Rightarrow \tau=\frac{\mathrm{L}}{\mathrm{R}+\mathrm{r}}=\frac{0.04}{50}=0.8 \mathrm{~ms}$. (1)
b) The time constant characterizes the duration of the growth of the current in a $(R+r, L)$ component ($1 / 4$)
4) a) $e_{1}=-L \frac{d i_{1}}{d t}=-L I_{0} \tau\left(e^{\frac{-t}{\tau}}\right)=-E e^{\frac{-t}{\tau}} \cdot(1 / 2)$
b) For $t=0, e_{1}=-E=-12$ V. $(\mathbf{1 / 4})$

B - 1) According to Lenz law, the coil carries a current i_{2} of the same direction as that of $i_{1} .(1 / 2)$
2) $\mathrm{u}_{\mathrm{AC}}=\mathrm{u}_{\mathrm{AB}}+\mathrm{u}_{\mathrm{BC}} \Rightarrow 0=\mathrm{ri}_{2}+\mathrm{L} \frac{\mathrm{di}_{2}}{\mathrm{dt}}+\mathrm{Ri}_{2} \quad \Rightarrow \mathrm{~L} \frac{\mathrm{di}_{2}}{\mathrm{dt}}+(\mathrm{R}+\mathrm{r}) \mathrm{i}_{2}=0 \quad$ (3/4)
3) $\frac{\mathrm{di}_{2}}{\mathrm{dt}}=-\mathrm{I}_{0} \tau \mathrm{e}^{\frac{-\mathrm{t}}{\tau}} \Rightarrow-\mathrm{LI}_{0} / \tau \mathrm{e}^{\frac{-\mathrm{t}}{\tau}}+(\mathrm{R}+\mathrm{r}) \mathrm{I}_{0} \mathrm{e}^{\frac{-\mathrm{t}}{\tau}}=0$
4) $\mathrm{e}_{2}=-\mathrm{L} \frac{\mathrm{di}}{2} \mathrm{dt}=-\mathrm{L}\left(-\mathrm{I}_{0} \tau \mathrm{e}^{\frac{-\mathrm{t}}{\tau}}\right)=\mathrm{E} \mathrm{e}^{\frac{-\mathrm{t}}{\tau}}$

$$
\text { At } t=0, e_{2}=E=12 \mathrm{~V} .(3 / 4)
$$

C- $e_{1}=-e_{2}$.
When K_{1} is closed, the self-induced emf opposes the growth of the current in the circuit $\Rightarrow \mathrm{e}_{1}<0$ (the coil plays the role of a generator in opposition).
When K_{2} is closed, the self-induced emf opposes the decay of the current in the circuit
$\Rightarrow \mathrm{e}_{2}>0$ (the coil plays the role of a generator). (1)

Third exercise (7.5 points)

A-1) Connections of the oscilloscope. (1/4)

$$
\text { 2) a) } \mathrm{T}_{1} \rightarrow 8 \text { div } \Rightarrow \mathrm{T}_{1}=0,8 \mathrm{~ms}
$$

$$
\mathrm{f}_{1}=1 / \mathrm{T}_{1}=1 / 0.8 \times 10^{-3}=1250 \mathrm{~Hz} \quad(\mathbf{1} / \mathbf{2})
$$

$$
\begin{equation*}
\text { b) }\left|\varphi_{1}\right|=2 \pi 1 / 8=\pi / 4 \mathrm{rad} \text {. } \tag{1/4}
\end{equation*}
$$

3) a) $i=I_{m} \cos \left(2 \pi f_{1} \cdot t-\varphi_{1}\right) ; u_{A B}=L d i / d t=-L I_{m}\left(2 \pi f_{1}\right) \sin \left(2 \pi f_{1} t-\varphi_{1}\right)$

$$
\mathrm{uc}=1 / \mathrm{C} \int \mathrm{idt}=\mathrm{I}_{\mathrm{m}} / \mathrm{C} \int \cos \left(2 \pi \mathrm{f}_{1} \mathrm{t}-\varphi_{1}\right) \mathrm{dt}
$$

$\mathrm{uc}=\left(\mathrm{I}_{\mathrm{m}} / \mathrm{C} .2 \pi \mathrm{f}_{1}\right) \sin \left(2 \pi \mathrm{f}_{1} \mathrm{t}-\varphi_{\mathrm{l}}\right)$
$\mathrm{u}_{\mathrm{R}}=\mathrm{Ri}=R \mathrm{I}_{\mathrm{m}} \cos \left(2 \pi \mathrm{f}_{\mathrm{I}} \mathrm{t}-\varphi_{\mathrm{I}}\right) \quad$ (1)
b) $U_{m} \cos 2 \pi f_{1} t=R I_{m} \cos \left(2 \pi f_{1} t-\varphi_{1}\right)+\left(I_{m} / C .2 \pi f_{1}\right) \sin \left(2 \pi f_{1} t-\varphi_{1}\right)-$
$\mathrm{LI}_{\mathrm{m}}\left(2 \pi \mathrm{f}_{1}\right) \sin \left(2 \pi \mathrm{f}_{1} \mathrm{t}-\varphi_{1}\right)$
$2 \pi \mathrm{f}_{1} \mathrm{t}=\pi / 2 \Rightarrow 0=\mathrm{RI}_{\mathrm{m}} \sin \varphi_{1}+\left(\mathrm{I}_{\mathrm{m}} / \mathrm{C} .2 \pi \mathrm{f}_{1}\right) \cos \varphi_{1}-\mathrm{LI}_{\mathrm{m}}\left(2 \pi \mathrm{f}_{1}\right) \cos \varphi_{1}$ $\Rightarrow R \sin \varphi_{1}=\left[\mathrm{L}\left(2 \pi \mathrm{f}_{1}\right)-1 /\left(\mathrm{C}\left(2 \pi \mathrm{f}_{1}\right)\right)\right] \mathrm{I}_{\mathrm{m}} \cos \varphi_{1}$

$$
\begin{equation*}
\operatorname{tg} \varphi_{1}=\frac{L\left(2 \pi f_{1}\right)-\frac{1}{C\left(2 \pi f_{1}\right)}}{R} \tag{3/4}
\end{equation*}
$$

B - Current resonance $\Rightarrow \varphi=0 \Rightarrow \operatorname{tg} \varphi=0 \Rightarrow \mathrm{~L} 2 \pi \mathrm{f}_{0}-1 / \mathrm{C}\left(2 \pi \mathrm{f}_{0}\right)=0$

$$
\Rightarrow \operatorname{LC} 4 \pi^{2} \mathrm{f}_{0}{ }^{2}=1 . \quad(3 / 4)
$$

$\mathbf{C - 1)} \operatorname{tg} \varphi_{1}=-\operatorname{tg} \varphi_{2} \Rightarrow \frac{L\left(2 \pi f_{1}\right)-\frac{1}{C\left(2 \pi f_{1}\right)}}{R}=\frac{\frac{1}{C 2 \pi f_{2}}-L 2 \pi f_{2}}{R}$

$$
\begin{align*}
& \Rightarrow L 2 \pi \mathrm{f}_{1}+\mathrm{L} 2 \pi \mathrm{f}_{2}=1 / \mathrm{C}\left[1 /\left(2 \pi \mathrm{f}_{1}\right)+1 /\left(2 \pi \mathrm{f}_{2}\right)\right] \\
& \mathrm{LC}=1 / 4 \pi^{2} \mathrm{f}_{1} \mathrm{f}_{2}=1 / 4 \pi^{2} \mathrm{f}_{0}{ }^{2} \Rightarrow \mathrm{f}_{0}{ }^{2}=\mathrm{f}_{1} \mathrm{f}_{2} \tag{1⁄2}
\end{align*}
$$

2) $\mathrm{f}_{2}=\left(500^{2}\right) / 1250=250000 / 1250=200 \mathrm{~Hz} \quad(1 / 2)$

D - $\varphi_{1}=\pi / 4 \Rightarrow L 2 \pi(1250)-1 /(C \times 2 \pi \times 1250)=650$
$\mathrm{LC}=1 /\left(4 \pi^{2} 500^{2}\right)=10^{-7} \Rightarrow \mathrm{LC} \times 4 \pi^{2} \times 1250^{2}-1=650 \times \mathrm{C} \times 2 \pi \times 1250$
$\Rightarrow \mathrm{C}=5.25 /(650 \times 2 \pi \times 1250)=10^{-6} \mathrm{~F}=1 \mu \mathrm{~F}$

$$
\mathrm{L}=10^{-7} / 10^{-6}=10^{-1} \mathrm{H}=0.1 \mathrm{H}
$$

Fourth exercise (7.5 points)

1) a) The energies of the hydrogen atom can take only well defined values (discrete) ($1 / 2$)
b) For an electronic transition $\mathrm{p} \rightarrow \mathrm{n}$ the emitted photon (or absorbed) has a wavelength:
$\lambda_{p, n}=\frac{h c}{E_{p}-E_{n}}$. As E_{p} and E_{N} are quantized then $\left(E_{p}-E_{N}\right)$ is quantized too; which means that the $\lambda_{\mathrm{p}, \mathrm{n}}$ has a well determined value, which corresponds to a line.; (1)
2) a) $\mathrm{E}_{2}=-\frac{\mathrm{E}_{\mathrm{o}}}{4}$ and $\mathrm{E}_{1}=\mathrm{E}_{\mathrm{o}} \Rightarrow \mathrm{E}_{2}-\mathrm{E}_{1}=\frac{3 \mathrm{E}_{0}}{4}=\frac{\mathrm{hc}}{\lambda_{2,1}}$

$$
\Rightarrow \mathrm{E}_{0}=\frac{4 \times 6.62 \times 10^{-34} \times 3 \times 10^{8}}{3 \times 1.216 \times 10^{-7}}=2.177 \times 10^{-18}\left(\mathbf{1}^{1} / 2\right)
$$

b) $\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\infty}-\mathrm{E}_{1}=\mathrm{E}_{0}=2.177 \times 10^{-18} \mathrm{~J} . \quad(1 / 2)$
3) a)
$E_{p}-E_{2}=-\frac{E_{0}}{p^{2}}+\frac{E_{0}}{4}=\frac{h c}{\lambda_{p, 2}} \Rightarrow \frac{1}{\lambda_{p, 2}}=\frac{E_{0}}{h c}\left(\frac{1}{4}-\frac{1}{p^{2}}\right)$

$$
\begin{equation*}
=\frac{2.177 \times 10^{-18} \times 10^{-9}}{6.62 \times 10^{-34} \times 3 \times 10^{8}}\left(\frac{1}{4}-\frac{1}{\mathrm{p}^{2}}\right)=1.096 \times 10^{-2}\left(\frac{1}{4}-\frac{1}{\mathrm{p}^{2}}\right)^{(} \tag{11/2}
\end{equation*}
$$

b) $\lambda_{\alpha}=656.28 \mathrm{~nm} \Rightarrow \mathrm{p}=3$, then it is the downward transition $3 \rightarrow 2$.

$$
\lambda_{\beta} ; 4 \rightarrow 2 \text { and } \lambda_{\gamma} ; 5 \rightarrow 2
$$

c) when $\mathrm{p} \rightarrow \infty \Rightarrow \lambda \rightarrow \lambda_{0}=\frac{4}{1.096 \times 10^{-2}}=364.96 \mathrm{~nm} \quad(1 / 2)$
4) For $\lambda_{\alpha}=656.28 \mathrm{~nm}, \mathrm{p}=3 ; \mathrm{K}=\lambda \frac{\mathrm{p}^{2}-4}{\mathrm{p}^{2}}=364.6 \mathrm{~nm}, \mathrm{~K} \cong \lambda_{0}\left(\mathbf{1}^{1 / 4}\right)$

