المادة: الرباضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم ٤٠ المدة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

In the space of an orthonormal system $(0; \vec{i}, \vec{j}, \vec{k})$, consider the plane (P) with equation:

If the space of an orthonormal system
$$(0, t, y)$$
, consider the plane $(1, y)$ with equals $x + y + z - 1 = 0$, and the line (d) with parametric equations
$$\begin{cases} x = -t - 1 \\ y = t + 5 \end{cases} (t \in \mathbb{R}),$$

$$z = 3t + 9$$

Let H(1, 1, -1) be a point on (P).

- 1) Determine A, the common point between (d) and (P).
- 2) Let (Δ) be the line passing through H and perpendicular to the plane (P).
 - **a-** Write a system of parametric equations of (Δ) .
 - **b-** Verify that E (2,2,0) is the intersection point between (Δ) and (d).
 - **c-** Calculate the angle formed by (d) and (P).
- 3) Let (Q) be the plane passing through O and the point F (2,1,0) and perpendicular to (P).
 - **a-** Write an equation of the plane (Q).
 - **b-** Let M(x,y,z) be a variable point on (Q).

Prove that the volume of the tetrahedron MEAH is constant.

c- Deduce that the two planes (Q) and (EAH) are parallel

II- (4 points)

A game consists of throwing a dart at a target .The target is divided into four sectors as shown in the figure at right.

Denote by P_0 the probability of obtaining 0 point, P_3 the probability of obtaining 3 points and P₅ the probability of obtaining 5 points.

1) We know that the dart touches the target on every throw,

$$P_5 = \frac{1}{2} P_3$$
 and $P_5 = \frac{1}{3} P_0$.

Verify that
$$P_5 = \frac{1}{6}$$
.

2) In this part, the game consists of throwing a maximum of two darts. Suppose that the two throws are independent. A player wins a round if s/he obtains a total greater than

or equal to 5, but the game stops if she obtains 5 at the first throw.

Consider the following events:

- G_1 : « The player wins a round in 1 throw».
- G₂: «The player wins a round in 2 throws ».
- G_0 : « The player loses a round ».

Show that $P(G_2) = \frac{1}{4}$, then deduce $P(G_0)$.

3) To participate in the game, a player should pay 2000 L.L.

If the player wins a round in one throw, she gains 5 000 L.L.

If the player wins a round in two throws, she gains 3 000 L.L.

If the player loses a round, s/he gains nothing.

Denote by X the random variable that corresponds to the algebraic gain of a player in one round

a- Verify that the possible values of X are : -2000, 1000 and 3000.

- **b-** Determine the probability distribution of X.
- **c-** A game is fair if E(x) > 0. Is this game fair?

III- (4points)

The complex plane refers to a direct orthonormal system $(0; \vec{u}, \vec{v})$.

Consider the points E, A,B,M and M' with affixes i, 2, 2i, z et z'.

Let z' be the complex number defined as: $z' = \frac{2-z}{2+iz}$.

- 1) If z = -2i, write z' in exponential form.
- 2) a) Prove that (z'-i)(2+iz) = 2 2i.
 - **b)** Verify that 2 + iz = i (z 2i).
 - c) Deduce the value of (z'-i)(z-2i).
 - **d**) Calculate BM×EM' and $(\vec{u}, \overrightarrow{BM}) + (\vec{u}, \overrightarrow{EM}')$.
- 3) Given z = x+iy and z' = x'+iy'.
 - a) Find x' and y' in terms of x and y.
 - **b**) If z' is pure imaginary, prove that M moves on a line whose equation should be determined.
 - c) Calculate, in this case, the angle $(\vec{u}, \overrightarrow{BM})$.

IV- (8points).

Part A

Let g be the function defined over]0; $+ \infty$ [as $g(x) = ax^2 - 2 \ln x + b$.

 (C_g) is its graph and A is the point on (Cg) so that $x_A = 1$.

- 1) Find a and b so that (Cg) is tangent at A to the line (d) with equation: y = 2x + 2.
- 2) In what follows let a = b = 2.
 - **a)** Find $\lim_{x\to 0} g(x)$ and $\lim_{x\to +\infty} g(x)$.
 - **b)** Set up the table of variations of g, deduce that g(x) > 0.
- 3) h is the function defined over]0; $+\infty$ [as $h(x) = x^2 \ln^2 x + 2 \ln x 1$.
 - **a)** Find $\lim_{x\to 0} h(x)$ and $\lim_{x\to +\infty} h(x)$.
 - **b**) Prove that $h'(x) = \frac{g(x)}{x}$. Deduce that h is increasing.
 - c) Calculate h(1), then discuss according to x the sign of h(x).

Part B

f is the function defined over]0;+ ∞ [as f(x) = x - 1 + $\frac{1 + \ln^2 x}{x}$; (C) is the graph of f.

- 1) a-Find $\lim_{x\to 0} f(x)$ and $\lim_{x\to +\infty} f(x)$.
 - **b-**Prove that the line (Δ) with equation y = x 1 is an asymptote to (C).
 - **c-** Show that (C) is above (Δ).
- **2) a-Prove that f** '(x) = $\frac{h(x)}{x^2}$.
 - **b-**Set up the table of variations of f.
 - **c-** Find the point B on (C) where the tangent (T) is parallel to the line (Δ).
 - **d-** Calculate $f(\frac{1}{2})$, f(2), then plot (Δ) , (T) and (C).
- 3) a- For $x \ge 1$, prove that f has an inverse function P, Find D_P .
 - **b-** Plot the graph (C') of P in the same system as that of (C).
- **4)** Let P (2) = α .
 - **a-Prove that** $2.2 < \alpha < 2.3$.
 - **b-** Prove that P'(2) = $\frac{\alpha^2}{2\alpha^2 3\alpha + 2\ln \alpha}$.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم -٤-المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

	Question I		
1	A(3;1;-3) for t=-4	0.5	
2.a	$\int x = k + 1$	0.5	
	$\begin{cases} x = k + 1 \\ y = k + 1 \\ z = k - 1 \end{cases}$		
	z = k - 1		
2.b	$E \in (\Delta)$ for t=-3 and $E \in (d)$ for k=1 \Rightarrow $E = (\Delta) \cap (d)$.	0.5	
2.c	The angle is $H\widehat{A}$ E and $cosH\widehat{A}E = \frac{2\sqrt{2}}{\sqrt{11}} \simeq 0.85$ then $H\widehat{A}E \simeq 32^{\circ}$.	0.5	
3.a	$\overrightarrow{OM} \cdot \left(\overrightarrow{OF} \wedge \overrightarrow{N_P} \right) = 0 \Rightarrow (Q) : x - 2y + z = 0$.	0.75	
3.b	$V = \frac{1}{6} \left \overrightarrow{EM} \cdot \left(\overrightarrow{EA} \wedge \overrightarrow{EH} \right) \right = \frac{2}{3} U^3$	0.75	
3.c		0.5	
	The volume is independent of M then the distance from (Q) to (EAH) is constant		
	then (Q)//(EAH).		

Question II				Note	
1	$P_0+ P_3+P_5=1$, then $P_5=\frac{1}{6}$			0.5	
2	$\frac{1}{2} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{3} = \frac{1}{4}$			1	
	$1 - \frac{1}{6} - \frac{1}{4} = \frac{7}{12}$				0.5
3.a	$-2000 \rightarrow P(G_0)$			0.5	
	$1000 \rightarrow P(G_2)$				
	$3000 \rightarrow P(G_1)$				
3.b	$X = x_i$	-2000	1000	3000	1
	$p(X = x_i)$	$\frac{7}{12}$	$\frac{1}{4}$	$\frac{1}{6}$	
3.c	$E(X) = \frac{-1000}{3} < 0$, then this game is not favorable.			0.5	

	Question III	
1	$z' = \frac{\sqrt{2}}{2}e^{\frac{i\pi}{4}}$	0.5
2.a	$\left(\frac{2-z}{2+iz}-i\right)(2+iz)=2-2i$	0.5
2.b	$2 + iz = i\left(z + \frac{2}{i}\right) = i(z - 2i)$	0.5

2.c	$(z'-i)(z-2i) = \frac{2-2i}{i(z-2i)}(z-2i) = \frac{2-2i}{i} = -2-2i$	0.5
2.d	$EM \times BM = \left -2 - 2i \right = 2\sqrt{2} ; \left(\overrightarrow{U}, \overrightarrow{BM}\right) + \left(\overrightarrow{U}, \overrightarrow{EM'}\right) = \arg\left(-2 - 2i\right) = \frac{5\pi}{4} + 2k\pi$	0.5
3.a	$x' = \frac{4 - 2x - 2y}{x^2 + (2 - y)^2}; y' = \frac{x^2 + y^2 - 2x - 2y}{x^2 + (2 - y)^2}$	0.5
3.b	z'is pure imaginary ,then x'=0 and y' \neq 0 then M moves on the line with equation $2-x-y=0$, without points A and B.	0.5
3.c	$(\overrightarrow{U}; \overrightarrow{EM'}) = \pm \frac{\pi}{2} \text{ then } (\overrightarrow{U}, \overrightarrow{BM}) = \frac{3\pi}{4} \text{ or } \frac{-\pi}{4}.$	0.5

		Question IV	Note
Part	A		
1	g(1)=4 and $g'(1)=2$ then $a=b=2$.		
2.a	$\lim_{x \to 0} g(x) = +\infty \lim_{x \to +\infty} g(x) = +\infty$		
2.b	$g'(x) = 4x - \frac{2}{x} = \frac{4x^2 - 2}{x}$		
	X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	g'(x) g(x)	- 0 + +∞	
		$3-2\ln\frac{\sqrt{2}}{2}$	
		in(g(x)>0) then $g(x)>0in its domain.$	0.5
3.a	$\lim_{x \to 0} h(x) = -\infty \lim_{x \to +\infty} h(x) = +\infty$		
3.b	$h'(x) = 2x - \frac{2\ln x}{1 + 2} + \frac{2}{1 + 2} = \frac{g(x)}{1 + 2}$ and $h'(x) > 0$ then h is increasing.		
3.c	h(1)=0	$\frac{x}{x} = \frac{x}{x}$ then $h(x) > 0$ for $x > 1$ and $h(x) < 0$ for $0 < x < 1$.	0.25
Part			
1.a	$\lim_{x \to 0} f(x) = +\infty \lim_{x \to +\infty} f(x) = +\infty$		
1.b	$\lim_{x \to +\infty} (f(x) - (x - 1)) = \lim_{x \to +\infty} \frac{1 + \ln^2 x}{x} = 0$		
	then (Δ) is asymptote to (C) .		
1.c	$f(x) - (x-1) = \frac{1 + \ln^2 x}{x} > 0 \text{ then } (\Delta) \text{ below } (C).$		
2.a	$f'(x) = 1 + \frac{2\ln x - 1 - \ln^2 x}{x^2} = \frac{h(x)}{x^2}$		
2.b	X	0 1 +∞	0.5
	f'(x) f(x)	- 0 + +∞ 1 +∞	-
			_

2.d	f'(x)=1 then $h(x) = x^2 \implies (\ln x - 1)^2 = 0 \implies B(e, f(e)).$	0.5	
2.c	f(0.5)=2.46 and f(2)=1.74	0.25	
3.a	for $x \in [1; +\infty[$, f is continuously and strictly increasing then it has an inverse $P = f^{-1}$ et $D_P = [1; +\infty[$		
3.b	(C') graph of P is the symmetric of (C) with respect to y=x.		
4.a	(2, α) on(C'), then (α , 2) is on (C) with $\alpha \ge 1$ $f(\alpha) = 2$, $f(2.2) < 2$ and $f(2.3) > 2$ Since f is increasing for $x \ge 1$ then $2.2 < \alpha < 2.3$	0.5	
4.b	$P'(2) = \frac{1}{f'(\alpha)} = \frac{\alpha^2}{h(\alpha)} = \frac{\alpha^2}{\alpha^2 - \ln^2 \alpha + 2\ln \alpha - 1}$. Hence	0.5	
	$f(\alpha) = 2 \Rightarrow \alpha^2 - \alpha + 1 + \ln^2 \alpha = 2\alpha \Rightarrow P'(2) = \frac{\alpha^2}{2\alpha^2 - 3\alpha + 2\ln \alpha}$		