F. الاورة العاديـة للعام	امتحانات الشههادة الثانويةٌ العامـة فرع الإجتمـاع والإقتصاد	وزارة التربية والتعليم العالِي المديرية العامة للتربية دائرة الامتحانـات
الالاسق:	مسابقة في مادة الرياضيات المدة: ساعتان	عدد المسائل: أربع

I- (4 points)

The results of a survey conducted by a company on the evolution of the price x_{i} of an article and the number of customers who purchased this article y_{i}, are given by the following table:

Unit price of the article: $\mathbf{x}_{\mathbf{i}}$ in thousands of $\mathbf{L L}$	12	15	18	22	24
Number of purchasers: $\mathbf{y}_{\mathbf{i}}$ in hundreds	16	13	11	9	6

1) Construct, in an orthogonal system, the scatter plot of the points (x_{i}, y_{i}).
2) Calculate the coordinates of the center of gravity G and plot this point in the preceding system.
3) Determine the coefficient of correlation and interpret the value thus found.
4) Write an equation of the regression line ($D_{y / x}$), of y in terms of x, and plot this line in the preceding system.
5) Suppose that the evolution of the price follows the given pattern and that the price of this article reaches 25 000LL.
a- Show that an estimation of the number of purchasers, at this price, is 581 .
b- In this case, suppose that each of these customers bought the article. The production cost of this article is 8000 LL . Estimate, thus, the total profit.

II- (4 points)

The third secondary class of a school consists of 3 sections: ES, LS and GS.
40% of the students of this class are in the ES section and 40% are in the LS section.
All the students of this class sit for the first term exam.

- $\frac{5}{8}$ of the students of the ES section pass this exam;
- 50% of the students of the LS section pass this exam;
- 60% of all the students pass this exam;

A student is randomly chosen from the third secondary class of this school.
Consider the following events :
E : «The chosen student is in the ES section»
L : «The chosen student is in the LS section»
G: «The chosen student is in the GS section»
R : «The chosen student pass the exam».

1) Calculate the probabilities $P(E \cap R), P(L \cap R)$ and deduce that $P(G \cap R)$ is equal to 0.15 .
2) The chosen student pass the exam. Calculate the probability that this student is from the GS section?
3) In this question, suppose that third secondary class counts 60 students.

A group of 2 students is chosen randomly and simultaneously from these 60 students.
Denote by X the random variable equal to the number of students who pass the exam in this group.
a- Verify that $\mathrm{P}(\mathrm{X}=1)=\frac{144}{295}$.
b- Determine the probability distribution of X .

III- (4 points)

A bank proposes to its customers, who are younger than 25 years, the following offer:
Depositing an amount of 2000000 LL in an account at an annual interest rate of 9% compounded monthly to which the bank adds directly and each month an amount of 9000 LL.
Imad decides to take advantage of this offer.
Denote by S_{n} the amount in Imad's account after n months. Thus, $\mathrm{S}_{0}=2000000$.

1) Prove that $S_{n+1}=1.0075 S_{n}+9000$.
2) (V_{n}) is the sequence defined by $V_{n}=S_{n}+1200000$ for all natural numbers n.
a- Show that (V_{n}) is a geometric sequence whose common ratio and first term V_{0} are to be determined.
b- Express V_{n} in terms of n . Deduce S_{n} in terms of n .
3) After how many months will the amount in Imad's account exceed 4000000 LL for the first time?

IV- (8 points)

Consider the function f defined over $\left[0,+\infty\left[\right.\right.$ by $f(x)=x+e^{-x+2}$ and denote by (C) its representative curve in an orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}$).
A-

1) a- Determine $\lim _{x \rightarrow+\infty} f(x)$.
b- (d) is the line with equation $y=x$. Prove that (C) is above (d).
c- Verify that (d) is an asymptote to (C).
2) a- Calculate $f^{\prime}(x)$ and set up the table of variations of f.
b- Draw (d) and (C) .
3) Determine over $[0 ;+\infty[$ an antiderivative F of f and deduce the area of the region bounded by (C), the axis of abscissas (x -axis) and the two lines with equations $\mathrm{x}=0$ and $\mathrm{x}=2$.

B-
A company wants to launch a new product to the market. The average cost function is given by $f(x)=x+e^{-x+2}$ where x represents the daily quantity produced in tens of units ($1 \leq x \leq 8$) and $\mathrm{f}(\mathrm{x})$ represents the average cost in millions of LL.

1) Give an economical interpretation to the minimum of $f(x)$.
2) Determine the total cost $C_{T}(x)$ of producing x tens of units.
3) a- A unit is sold for a fixed price of 200000 LL. Show that the profit obtained by the sale of x tens of units, is given by $P(x)=2 x-x^{2}-x e^{-x+2}$.
b- If the company sells 60 units of the product, does it make a profit?
c- Copy and complete the table of variations of P given below:

x	1		$2-\ln 2$	8	
$\mathrm{P}^{\prime}(\mathrm{x})$	0	+	0	-	
$\mathrm{P}(\mathrm{x})$					

d- Is the company interested in launching this product to the market? Justify.

I	Answers	Marks
1		1
2	$\overline{\mathrm{x}}=18.2 \quad ; \quad \overline{\mathrm{y}}=11$ (by calculator) $\quad \mathrm{G}(18.2 ; 11)$.	1
3	$\mathrm{r}=-0.9885$ (by calculator) There is a strong negative linear correlation between the two variables.	1
4	$\mathrm{y}=-0.76 \mathrm{x}+24.913$ (by calculator)	1
5a	The price of an article is 25000 LL so $\mathrm{x}=25$ Then $\mathrm{y}=-0.76 \times 25+24.913 ; \quad \mathrm{y}=5.81$. Thus, the number of purchasers is 581 .	1.5
5b	The total profit is ($25000-8000$) $\times 581=9877000$ LL	1.5

II	Answers	Marks
1	$\mathrm{P}(\mathrm{E} \cap \mathrm{R})=\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{R} / \mathrm{E})=(40 / 100) \times(5 / 8)=0.25$. $\mathrm{P}(\mathrm{V} \cap \mathrm{R})=\mathrm{P}(\mathrm{V}) \times \mathrm{P}(\mathrm{R} / \mathrm{V})=(40 / 100) \times(1 / 2)=0.2$. $\mathrm{P}(\mathrm{R})=\mathrm{P}(\mathrm{G} \cap \mathrm{R})+\mathrm{P}(\mathrm{V} \cap \mathrm{R})+\mathrm{P}(\mathrm{E} \cap \mathrm{R}) . \mathrm{Thus} ,\mathrm{P}(\mathrm{G} \cap \mathrm{R})=0.6-0.25-0.2=0.15$.	2.5
2	$\mathrm{P}(\mathrm{G} / \mathrm{R})=\frac{\mathrm{P}(\mathrm{G} \cap \mathrm{R})}{\mathrm{P}(\mathrm{R})}=\frac{0.15}{0.6}=0.25$.	1.5
3 a	The students that pass the exam are $0.6 \times 60=36$. $\mathrm{P}(\mathrm{X}=1)=\frac{\mathrm{C}_{36}^{1} \times \mathrm{C}_{24}^{1}}{\mathrm{C}_{60}^{2}}=\frac{864}{1770}=\frac{144}{295}$	1
3 b	The possible values of X are 0,1 and 2. $\mathrm{P}(\mathrm{X}=0)=\frac{\mathrm{C}_{24}^{2}}{\mathrm{C}_{60}^{2}}=\frac{46}{295} ; \mathrm{P}(\mathrm{X}=1)=\frac{144}{295} ; \mathrm{P}(\mathrm{X}=2)=\frac{\mathrm{C}_{36}^{2}}{\mathrm{C}_{60}^{2}}=\frac{21}{59}$.	1

III	Answers	Marks
1	$S_{n+1}=S_{n}\left(1+\frac{0.09}{12}\right)+9000=1.0075 S_{n}+9000$.	1
$3 a$	$\mathrm{V}_{\mathrm{n}+1}=\mathrm{S}_{\mathrm{n}+1}+75=1.0075 \mathrm{~S}_{\mathrm{n}}+9000+1200000=1.0075\left(\mathrm{~S}_{\mathrm{n}}+\frac{1209000}{1.0075}\right)$ $=1.0075\left(\mathrm{~S}_{\mathrm{n}}+1200000\right)=1.0075 \mathrm{~V}_{\mathrm{n}}$ Thus, $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence with first term $\mathrm{V}_{0}=\mathrm{S}_{0}+1200000=3200000$ and with common ratio $\mathrm{r}=1.0075$.	2

3b	$V_{n}=V_{0} r^{n}=3200000(1.0075)^{n} \quad S_{n}=V_{n}-1200000=3200000(1.0075)^{n}-1200000$.	2
4	$\mathrm{~S}_{\mathrm{n}}>4000000 . ;(3200000)(1.0075)^{n}>5200000$ then $\mathrm{n} \ln (1.0075)>\ln (1.625) ; \mathrm{n}>64.97$	
	After 65 months the amount in Imad's account exceeds 4000000 for the first time.	2

