المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم -٣-المدة: ساعتان

# الهيئة الأكاديمية المشتركة قسم: الرياضيات



### نموذج مسابقة (يراعى تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

#### I- (4 points)

In the space of an orthonormal system  $(0; \vec{i}, \vec{j}, \vec{k})$ , consider the point A (2,2,0) and the line (d) with

parametric equations : (d) 
$$\begin{cases} x = -t + 1 \\ y = 3 \\ z = -t \end{cases}$$

Let (P) be the plane determined by A and (d).

- 1) Show that x + y z 4 = 0 is an equation of (P).
- 2) Denote by (Q) the plane containing (d) and perpendicular to (P). Prove that an equation of the plane (Q) is x 2y z + 5 = 0.
- 3) Consider in the plane (Q) the circle ( C ) with center B(-3,0,2) and radius  $r=3\sqrt{3}$ .
  - **a-** Show that (C) is tangent to (d).
  - **b-** Find the coordinates of E, the tangency point between (d) and (C).
- 4) Verify that L(-6,-3,5) is the symmetric point of E with respect to B.
- 5) Let F(1,3,0) be a given point on (d) and M a variable point on ( $\Delta$ ), the tangent at L to (C). Calculate the area of the triangle MEF.

#### II- (4 points)

A bag U contains white and black balls.

40 % of those balls are white and the others are black.

20 % of white balls are numbered 0 and 30 % of black balls are numbered 0.

A second bag V contains 5 balls numbered 0 and 5 balls are numbered -1.

#### Part A

One ball is randomly selected from U.

Consider the event E:"the selected ball is numbered 0 ".

- 1) Prove that the probability of E is equal to 0.26.
- 2) Knowing that the ball selected is not numbered 0, calculate the probability that this ball is white.

#### Part B

Consider the following game:

One ball is randomly selected from U.

- If the ball drawn from U is numbered 0, then it is placed in V and then two balls are randomly and simultaneously selected from V.
- Otherwise, the ball from U is kept out and then the one ball is selected from V.

Let X be the random variable that is equal to the sum of points obtained at the end of the game.

- 1) Verify that the possible values of X are -2, -1, 0.
- 2) Verify that p (x=0) =  $\frac{97}{220}$  and determine the probability distribution of X.

#### III- (4 points)

The complex plane refers to a direct orthonormal system (0;  $\vec{u}$ ,  $\vec{v}$ ). Consider the points A and B of respective affixes  $a = -4\sqrt{3} - 4i$  and  $b = -4\sqrt{3} + 4i$ .

- 1) Find the nature of triangle OAB.
- 2) Let C be the point of affix  $c = \sqrt{3} + i$  and D be the point such that OC = OD and  $(\overrightarrow{OC}, \overrightarrow{OD}) = \frac{\pi}{3} (2\pi)$ . Determine the affix of D.
- 3) Let G be the point of affix  $g = -4\sqrt{3} + 6i$ .
  - a- Show that OBGD is a parallelogram.
  - **b-** Verify that:  $\frac{c-g}{a-g} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ .
  - **c-** Deduce, in radians, the measure of the angle  $(\overrightarrow{GA}, \overrightarrow{GC})$  and the value of the ratio  $\frac{GC}{GA}$ .
  - **d-** What is the nature of triangle AGC?

#### IV- (8 points)

#### Part A

Let g be the function defined over R as :  $g(x) = e^{-x}(1-x) + 1$ .

- 1) Find  $\lim g(x)$  as  $x \to -\infty$  and as  $x \to +\infty$ .
- 2) a- Set up the table of variations of g.
  - **b-** Deduce that g(x) > 0 for all x in R.

#### Part B

Consider the differential equation (E): y'' + 2y' + y = x + 2.

- 1) a- Verify that u = x is a particular solution for (E).
  - **b-** Let y = z + u; Form the differential equation (E')satisfied by z and solve this equation .
  - **c-** Deduce the general solution y = f(x) for the equation (E).
  - **d-**Denote by (C) the representative curve of f in an orthonormal system (O;  $\vec{i}$ ,  $\vec{j}$ ). Determine f so that (C) is tangent at O to the line y = 2x.

In what follows, suppose that  $f(x) = x e^{-x} + x$ , and f is defined over R.

- 2) a- Determine  $\lim_{x \to \infty} f(x)$  as  $x \to -\infty$  and as  $x \to +\infty$ .
  - **b-** Show that the straight line (d) with equation y = x is an asymptote to (C).
  - **c-** Discuss according to x the relative position of (d) and (C).
- 3) a- Verify that f'(x) = g(x) and set up the table of variations of f.
  - **b-** Discuss according to x the concavity of (C).
  - **c-** Determine the point E on (C) where the tangent (T) is parallel to (d).
  - **d-** Plot (d), (T) and (C).
- **4**) Consider the function h defined as:  $h(x) = \ln(y_E f(x))$ .
  - a- Determine the domain of h.
  - **b-** Set up the table of variations of h.
- 5) Calculate A, the area of the region bounded by (C), (d), and the two lines with equations (x = -1) and (x = 1).

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم -٣-المدّة: ساعتان

## الهيئة الأكاديميّة المشتركة قسم: الرياضيات



# أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٦-٢٠١ وحتى صدور المناهج المطوّرة)

|     | Question I                                                                                                                                                              | Mark |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1   | (P) = (A, (d)) : x + y - z - 4 = 0.                                                                                                                                     | 0.5  |
| 2   | (Q) containing (d) and perpendicular to (P) then (Q): $x - 2y - z + 5 = 0$ .                                                                                            | 0.5  |
| 3.a | $d(B,(d)) = 3 \sqrt{3} = R \cdot (d)$ is tangent to (C).                                                                                                                | 0.75 |
| 3.b | $\overrightarrow{BE}.\overrightarrow{v_d} = 0$ with $\overrightarrow{BE}(-t+4,3,-t-2)$ and $\overrightarrow{v_d}(-1,0,-1)$ , then $t=1$ and E(0,3,-1).                  | 0.5  |
| 4.a | B is midpoint of [EL].                                                                                                                                                  | 0.5  |
| 5   | ( $\Delta$ ) is the parallel through L to (d), then d(M,(d)) = d(L,(d)) = d(L,(P)) = 6 $\sqrt{3}$<br>Area of the triangle MEF = $\frac{EL \times EF}{2} = 3\sqrt{6}u^2$ | 1.25 |

|   | Question II                                                                                                                                                                                                                                             | Mark |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | Part A                                                                                                                                                                                                                                                  |      |
| 1 | $P(E) = P(W \cap E) + P(B \cap E) = 0.08 + 0.18 = 0.26$                                                                                                                                                                                                 | 1    |
| 2 | $P(W/E) = \frac{P(W \cap \overline{E})}{P(\overline{E})} = \frac{P(\overline{E}/W) \times P(W)}{P(\overline{E})} = \frac{0.32}{0.74} = 0.432$                                                                                                           | 0.75 |
|   | Part B                                                                                                                                                                                                                                                  |      |
| 1 | Then $X = \{0,-1,-2\}$                                                                                                                                                                                                                                  | 0.75 |
| 2 | $P(X=0) = 0.26 \frac{C_6^2}{C_{11}^2} + 0.74 \frac{C_5^1}{C_{10}^1} = \frac{97}{220}$ $P(X=-1) = 0.26 \frac{6 \times 5}{C_{11}^2} + 0.74 \frac{5}{10} = \frac{563}{1100}$ $P(X=-2) = 0.26 \frac{C_5^2}{C_{11}^2} = \frac{13}{275} \text{ Then sum} = 1$ | 1.5  |

| Question III |                                                               | Mark |
|--------------|---------------------------------------------------------------|------|
|              | $OA =  a  =  -4\sqrt{3} - 4i  = 8$                            |      |
| 1)           | OB = $ b  =  -4\sqrt{3} + 4i  = 8$<br>AB = $ b-a  =  8i  = 8$ | 0.5  |
| 1)           | AB =  b - a  =  8i  = 8                                       | 0.5  |
|              | Then OAB is an equilateral triangle.                          |      |
| 2)           | $OC = OD$ , then $ z_D  =  z_C  =  \sqrt{3} + i  = 2$         | 1    |

|     | $(\overrightarrow{OC},\overrightarrow{OD}) = arg(\frac{z_D}{z_C}) = arg(z_D) - arg(z_C) = arg(z_D) - \frac{\pi}{6} = \frac{\pi}{3}$ , then $arg(z_D) = \frac{\pi}{2}$ |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | $z_D =  z_D  \times e^{iarg(z_D)} = 2i$                                                                                                                               |     |
|     | $z_{\overrightarrow{OB}} = z_B = b = -4\sqrt{3} + 4i$                                                                                                                 |     |
| 3.a | $z_{\overrightarrow{DG}} = z_G - z_D = g - z_D = -4\sqrt{3} + 6i - 2i = -4\sqrt{3} + 4i$                                                                              | 0.5 |
|     | $z_{\overrightarrow{OB}} = z_{\overrightarrow{DG}}$ ; then OBGD is a parallelogram                                                                                    |     |
| 3.b | $\frac{c-g}{a-g} = \frac{\sqrt{3} + i - (-4\sqrt{3} + 6i)}{-4\sqrt{3} - 4i - (-4\sqrt{3} + 6i)} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$                                  | 0.5 |
|     | $(\overrightarrow{GA}, \overrightarrow{GC}) = \arg(\frac{c-g}{2-g}) = \arg(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = \frac{\pi}{2}(2\pi)$                                  | 0.5 |
| 3.c | $\frac{GC}{GA} = \left  \frac{c - g}{a - g} \right  = \left  \frac{1}{2} + \frac{\sqrt{3}}{2} i \right  = 1$                                                          | 0.5 |
| 3.d | AGC is an equilateral triangle being an isosceles triangle with one 60° angle.                                                                                        | 0.5 |

|        | Question IV M                                                                                                                                                             |      |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        | Part A                                                                                                                                                                    |      |
| 1      | $x \to -\infty$ , $g(x) \to +\infty$ .<br>$x \to +\infty$ , $g(x) \to 1$ .                                                                                                | 1    |
| 2.a    | $g'(x) = -e^{x} - e^{-x} (1-x) = e^{-x} (x - 2).$ $\frac{x}{g'(x)} - \frac{2}{0} + \infty$ $g(x) + \infty$ $1 - \frac{1}{e}$                                              | 0.5  |
| 2.b    | min(g(x)) is positive then $g(x)$ is positive .                                                                                                                           | 0.25 |
| Part B |                                                                                                                                                                           |      |
| 1.a    | u' = 1 and $u'' = 0$ , $u = x$ solution for (E).<br>y = z + u. $z'' + u'' + 2z' + 2u' + z + u = x + 2$ .                                                                  | 0.25 |
| 1.b    | $y = z + u$ . $z'' + u'' + 2z' + 2u' + z + u = x + 2$ . $z'' + 2z' + z = 0$ . $r^2 + 2r + 1 = 0$ ; $r = -1$ then $z = (C_1x + C_2)e^{-x}$ with $C_1$ and $C_2$ constants. | 0.5  |
| 1.c    | $y = z + u = x + (C_1x + C_2) e^{-x} = f(x)$ with $C_1$ and $C_2$ constants.                                                                                              | 0.5  |
| 1.d    | $f(0) = 0$ and $f'(0) = 2$ so $f(x) = xe^{-x} + x$ .                                                                                                                      | 0.5  |
| 2.a    | $x \to -\infty, f(x) \to -\infty$<br>$x \to +\infty, f(x) \to +\infty$                                                                                                    | 0.5  |
| 2.b    | $\lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} \frac{x}{e^x} = 0 \text{ then (d) is an asymptote to (C)}.$                                                       | 0.5  |
| 2.c    | $f(x) - x = x e^{-x}.$ $\frac{x}{f(x)-x} = 0$ $+$ $O +$ $Fosition (C)below (d)  (C) above (d)$ $(C) \cap (d) = O(0,0) .$                                                  | 0.5  |

| 3.a | f'(x) = $e^{-x}(1-x) + 1 = g(x) > 0$ .                                                                                                                                         |      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | $\mathbf{x} - \infty + \infty$                                                                                                                                                 | 0.25 |
|     | f'(x) +                                                                                                                                                                        | 0.23 |
|     | f(x)                                                                                                                                                                           |      |
|     | f''(x) = g'(x).                                                                                                                                                                |      |
| 3.b | $\begin{bmatrix} x \\ x \end{bmatrix} - \infty$ $\begin{bmatrix} 2 \\ + \infty \end{bmatrix}$                                                                                  |      |
|     | f "(x) - 0 +                                                                                                                                                                   |      |
|     | concavity concave down concave up                                                                                                                                              | 0.5  |
|     | I $(2; 2+\frac{2}{e^2})$ inflection point                                                                                                                                      |      |
| 3.c | f'(x) = 1; g(x) = 1<br>$e^{-x} (1-x) + 1 = 1$ .                                                                                                                                |      |
| 3.0 | $x = 1$ $E(1, 1+\frac{1}{-})$                                                                                                                                                  | 0.25 |
|     | e /                                                                                                                                                                            |      |
| 3.d | 3. 2. E  1. 3. 3. 3. 4. 4.  1. 5. 1.  4.  1.  1.  1.  1.  1.  1.  1.  1.                                                                                                       | 0.75 |
| 4.a | $ \begin{array}{l} h\;(x) = ln\;(y_E - f\;(x)). \\ y_E - f(x) \ge 0\;;  f\;(x) \le y_E \; then\; x < 1 \; \; therefore \;\; D_h = ] \;  \infty \;, \; 1 \; [. \\ \end{array} $ | 0.5  |
|     | $h'(x) = \frac{-f'(x)}{y_E - f(x)}$                                                                                                                                            |      |
| 4.b | $ \begin{array}{c cccc} x & -\infty & 1 \\ \hline h' & - & \\ h & +\infty & -\infty \end{array} $                                                                              | 0.5  |
| 5   | Area = $\int_{-1}^{0} (x - f(x)) dx + \int_{0}^{1} (f(x) - x) dx = \int_{-1}^{0} (-xe^{-x}) dx + \int_{0}^{1} (xe^{-x}) dx$ integration by parts                               | 0.75 |