الدورة الإستثنائية للعام 2012	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	4 < 1 \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

This exam is formed of three exercises in two pages. The use of a non-programmable calculator is allowed.

First exercise (7 points)

Refraction of light

A luminous beam, propagating in a medium (1), falls on the surface separating this medium from another medium (2). We notice that all the incident rays admit refracted rays.

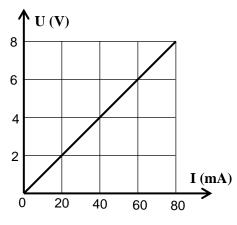
- 1) Medium (2) is more refractive than medium (1). Why?
- 2) During the passage from medium (1) to medium (2), is the refracted ray nearer or farther from the normal than the incident ray? Why?
- 3) The adjacent diagram represents the surface of separation (AB) between the two mediums (1) and (2), the incident ray (SI) and the point of incidence I.
- (1) A (2) I B

- a) Redraw the diagram.
- **b)** Trace, on your diagram, the path of the refracted ray (IR) corresponding to the incident ray (SI).
- c) Indicate, on this diagram, the angle of incidence i, the angle of refraction r and the angle of deviation d.
- 4) Another luminous beam passes now from medium (2) into medium (1). We notice that an incident ray undergoes refraction only if the angle of incidence is $i \le 49^0$.
 - a) What does the angle 49^0 represent to the system of the two mediums (1) and (2)?
 - **b**) Consider an incident ray (S_1I_1) with an angle of incidence $i_1 = 60^0$.
 - i) The incident ray (S_1I_1) undergoes total internal reflection. Justify.
 - ii) After meeting the surface of separation, the considered ray undergoes a deviation by an angle d', [d' is the angle between the prolongation of the incident ray (S_1I_1) and the reflected ray (I_1R_1)].

Draw a diagram showing the incident ray (S_1I_1) , the surface of separation (AB), the normal (NN') at the point of incidence I_1 , the reflected ray (I_1R_1) , and the angle d'.

iii) Deduce the value of d'.

Second exercise (7 points)


Maximum voltage of a resistor

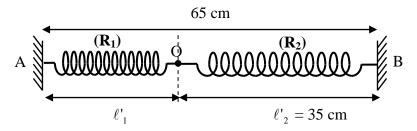
The aim of this exercise is to determine the maximum voltage U_{max} that a resistor (D) of resistance R can withstand. For this we set-up an electric circuit formed of:

- ❖ a DC generator (G) of adjustable voltage;
- **the resistor (D)**;
- ❖ a voltmeter (V) to measure the voltage U across (D);
- ❖ an ammeter (A), of negligible resistance, to measure the current I that traverses (D).

A – Determination of R

- 1) Draw a diagram of the corresponding circuit.
- 2) Knowing U and I, give the name of the law that must be applied to deduce R.
- 3) Write the relation that expresses this law.
- **4**) The characteristic curve current-voltage of (D) is given by the graph of the adjacent figure.
 - a) Give the value of the voltage U across (D) when it carries a current I = 50 mA.
 - **b**) Deduce the value of R.

$B - \underline{Determination\ of\ U_{max}}$


- 1) Give the expression of the power P dissipated in (D) in terms of U and I.
- 2) Show that P can be written in two forms: $P = \frac{U^2}{R}$ and $P = R.I^2$.
- 3) Knowing that the maximum power withstand by (D) is $P_{max} = 1W$, calculate U_{max} .

Third exercise (6 points)

Mechanical interactions

In order to determine the force constant (stiffness) K_1 of an elastic spring (R_1) , of free length $\ell_1=20$ cm, we consider the system of the adjacent figure.

In this system, the extremity A of (R_1) is connected to a fixed support. The other extremity is connected at O to another spring (R_2) , of stiffness $K_2 = 100$ N/m and of free

length $\ell_2 = 30$ cm. The other extremity B of (R_2) is connected to another fixed support. The system formed of (R_1) and (R_2) is at rest.

- 1) Referring to the figure, calculate the length ℓ'_1 of (R_1) .
- 2) a) Show that the two springs are elongated.
 - **b**) Calculate the elongations ΔL_1 of (R_1) and ΔL_2 of (R_2) .
 - c) (R_1) and (R_2) are in interaction. Why?
- 3) Write down the vector relation between the two forces \vec{T}_1 , exerted by (R_1) on (R_2) , and \vec{T}_2 , exerted by (R_2) on (R_1) , at point O.
- 4) Calculate the magnitude T_2 of the force \vec{T}_2 and deduce the magnitude T_1 of \vec{T}_1 .
- 5) Find the value of K_1 .

الدورة الإستثنائية للعام 2012	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	المراسة عمال	مشروع معيار التصحيح

Answer the three following exercises:

First exercise (7 points)

Part of	Answer	Mark
the Q	Answei	IVIAI K
1	The medium (2) is more refractive	1
2	The refracted ray deviates towards the normal	1
3	Diagram.	1.5
4.a	49 ⁰ represents the limiting angle.	0.5
4.b.i	Total reflection.	0.5
4.b.ii	Diagram	2.5

Second exercise (7 points)

Part of	Answer	Mark
the Q		
1)	Diagram	1.50
2.a)	Ohm's law.	0.50
2.b)	U = R.I	0.50
3.a)	I = 50 mA; thus graphically $U = 5 V$.	0.50
3.b)	$R = U/I = 5/0.05 = 100 \Omega$	1
4.a)	P = U.I	0.50
4.b)	$P = U.I$ and $U = RI$ thus $P = RI^2$. (0.75) $P = U.I$ and $I = U/R$ thus $P = U^2/R$. (0.75)	1.50
4.c)	$U_{\text{max}} = \sqrt{R \times P_{\text{max}}} = 10 \text{ V}.$	1

Third exercise (6 points)

Part of the Q	Answer	Mark
1	$\ell'_1 = 65 - \ell'_2 = 30 \text{ cm}$	0.50
2.a	$\ell'_1 > \ell_1$ and $\ell'_2 > \ell_2$. The two springs are elongated.	1
2.b	The elongated (R_1) , exerts a force on (R_2) . The elongated (R_2) , exerts a force on (R_1) . The two springs are in interaction.	1

3	$\Delta \ell_2 = \ell'_2 - \ell_2 = 5 \text{ cm. } (0.5)$ $T = K.\Delta \ell (0.5) \text{ thus } T_2 = K_2.\Delta \ell_2 = 5 \text{ N} (0.5)$	1.5
4	According to the principle of interaction: $\vec{T}_1 = -\vec{T}_2$.	0.50
5	$T_1 = T_2 = 5 \text{ N}.$	0.50
6	$\Delta \ell_1 = \ell'_1 - \ell_1 = 10 \text{ cm. } (0.5)$ Hooke's law: $K_1 = \frac{T_1}{\Delta \ell_1} = 50 \text{ N/m. } (0.5)$	1