الدورة العادية للعام ٢٠١٢	امتحانات الشهادة الثانوية العامة فرع الآداب والإنسانيات	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ثلاث
الرقم:	المدة: ساعة واحدة	

: - يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات ملحظة

- يستطيع المُرشِّح الإجابة بالترتيب الذي يناسبه (دون الإلتزام بترتيب المسائل الوارد في المسابقة).

I- (5 points)

Les 100 personnes d'une population sont réparties selon leur groupe sanguin comme l'indique le tableau suivant :

Groupe	O	A	В	AB
Rhésus				
Rhésus +	32	40	6	2
Rhésus –	7	6	2	5

On interroge au hasard une personne de cette population.

- 1) Quelle est la probabilité pour que la personne interrogée soit de Rhésus négatif ?
- 2) On considère les événements suivants :

A : « la personne interrogée est du groupe sanguin A ».

E : « la personne interrogée est de Rhésus positif ».

Calculer la probabilité P (A/E).

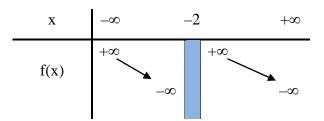
- 3) La personne interrogée est du groupe sanguin B, quelle est la probabilité qu'elle soit de Rhésus positif ?
- 4) Dans cette question on interroge au hasard deux personnes, l'une après l'autre, sur leur groupe sanguin. Calculer la probabilité que les deux personnes interrogées soient du groupe sanguin O.

II- (5 points)

Le tableau suivant représente les nombres de kilogrammes de pommes, d'oranges et de bananes achetés par trois amis et le montant total en LL payé par chacun d'eux.

	Nombre de kilogrammes de pommes	Nombre de kilogrammes d'oranges	Nombre de kilogrammes de bananes	Montant total payé en LL
Samia	2	1	3	12 500
Nadim	1	2	0	7 000
Salim	0	2	4	10 000

- 1) Calculer le prix d'un kg de pommes, celui d'un kg d'oranges et celui d'un kg de bananes.
- 2) Salim décide d'acheter, en plus, deux kilogrammes de pommes et Nadim décide d'acheter, en plus, quelques kilogrammes de bananes.


Combien de kilogrammes de bananes Nadim doit-il acheter pour qu'il paie le même montant total que Salim ?

III- (10 points)

Soit f la fonction définie sur] $-\infty$; $-2[\cup]-2$; $+\infty$ [par $f(x) = ax + b + \frac{2}{x+2}$ où a et b sont deux réels $(a \ne 0)$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O ; $\stackrel{\rightarrow}{i}$, $\stackrel{\rightarrow}{j}$).

Le tableau de variations de f est le suivant :

A-

- 1) Comparer, avec justification, f(-4) et f(-3).
- 2) Quel est le nombre de solutions de l'équation f(x) = -2?
- 3) Sachant que f(-3) = 0 et f(0) = 0, calculer a et b.

B-

Dans cette partie on prend $f(x) = -x - 1 + \frac{2}{x+2}$.

- 1) Vérifier que la droite (Δ) d'équation x = -2 et que la droite (D) d'équation y = -x 1 sont des asymptotes à (C).
- 2) Tracer (Δ), (D) et (C).
- 3) a- La droite (d) d'équation y = x coupe la courbe (C) en deux points distincts.

Calculer les coordonnées de ces deux points et tracer (d) dans le même repère (O; \vec{i} , \vec{j}).

b- En utilisant (C) et (d), résoudre l'inéquation suivante :

$$-x-1+\frac{2}{x+2}\geq x.$$

I	Corrigé	Note
1	$P(R_{-}) = \frac{7+6+2+5}{100} = \frac{20}{100} = 0, 2.$	1
2	$P(A/E) = \frac{40}{32 + 40 + 6 + 2} = \frac{40}{80} = \frac{1}{2} = 0,5.$	1
3	$P(E/B) = \frac{6}{8} = \frac{3}{4} = 0.75.$	1.5
4	P(les deux du groupe O)= $\frac{39}{100} \times \frac{38}{99} = \frac{247}{1650}$.	1.5

II	Corrigé	Note
1	$ \begin{array}{l} x \; \text{est le prix d'} 1 \; \text{kg de pommes.} \; ; \; y \; \text{est le prix d'} 1 \; \text{kg d'oranges.} \\ z \; \text{est le prix d'} 1 \; \text{kg de bananes.} \\ \begin{cases} 2x + y + 3z = 12500 \\ x + 2y = 7000 \\ 2y + 4z = 10000 \end{cases} \\ x = 3000 \; \; ; \; \; y = 2000 \; \; ; \; \; z = 1500 \text{(Calculatrice)} $	3
2	$2\times3000 + 10000 = b\times1500 + 7000$; $1500 b = 9000$; $b = 6$ Donc Nadim doit acheter 6 kg de bananes.	2

III	Corrigé	Note
A1	-3 et -4 appartiennent à $]-∞$;-2 [où f est continue et strictement décroissante ; donc f(-3) < f (-4).	1
A2	Le nombre de solutions de $f(x) = -2$, est 2.	
A3	f(0) = 0 donc b+1=0 et b=-1; f(-3) = 0 donc -3a+b=2 et a=-1.	2
B1	$\lim_{x \to +\infty} (f(x) - y) = \lim_{x \to +\infty} \frac{2}{x+2} = 0; \lim_{x \to -\infty} (f(x) - y) = \lim_{x \to -\infty} \frac{2}{x+2} = 0.$ Donc la droite (D) d'équation $y = -x$ -1 est une asymptote à (C). $\lim_{\substack{x \to -2 \\ x > -2}} f(x) = +\infty, \lim_{\substack{x \to -2 \\ x < -2}} f(x) = -\infty \text{ (Lecture du tableau), donc la droite}$ $(\Delta) \text{ d'équation } x = -2 \text{ est une asymptote à (C)}.$	1
B2	3- -5 -4 -1 -2 -1 0 1 2 -2-	2
ВЗа	$-x-1+\frac{2}{x+2}=x; \ 2x^2+5x=0 \ x=\frac{-5}{2} \text{ ou } x=0; \text{ donc (C) coupe (d) en}$ $A(\frac{-5}{2},\frac{-5}{2}) \text{ et } O(0,0).$	1.5
B3b	La solution correspond à la région où (C) est au-dessus de (d) ou (C) coupe (d) et ceci est vrai pour : $x \le \frac{-5}{2}$ ou $-2 < x \le 0$.	1.5