دورة 2011 العادية	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة ساعتان	عدد المسائل : أربع

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.

- يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

In the space referred to a direct orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$, consider the line (d) defined by:

$$\int \mathbf{x} = \mathbf{t} - 1$$

(d): $\begin{cases} y = t + 3 \\ z = t + 1 \end{cases}$ (t is a real parameter).

- 1) Determine an equation of the plane (Q) determined by the point O and the line (d).
- 2) a- Calculate the coordinates of point H, the orthogonal projection of O on (d).

b- Show that the distance from point O to line (d) is equal to $2\sqrt{2}$.

- 3) (P) is the plane with equation (2m 1)x my + (1 m)z + 6m 2 = 0, where m is a real parameter. a- Verify that H belongs to (P).
 - b- Show that (P) contains the line (d).
 - c- Calculate, in terms of m, the distance from point O to (P).
- 4) Determine m so that the line (OH) is perpendicular to plane (P).

II- (4 points)

In a school, each student of the GS and LS sections practices only one sport. The students are distributed as shown in the following table:

	Football	Basketball	Tennis
LS	1	6	3
GS	4	4	2

The name of each student is written on a separate card, where all the 20 cards used are identical.

A- The cards carrying the names of the LS students are placed in a box B₁ and those carrying the names of the GS students are placed in another box B₂.

The school principal chooses at random a box and then draws, randomly and simultaneously, two cards from the chosen box.

Consider the following events:

E: The chosen box is B_1

S: The two drawn cards carry the names of two students who practice the same sport.

1) a-Show that the probability p(S / E) is equal to $\frac{2}{5}$ and deduce $p(E \cap S)$.

b- Prove that
$$p(S) = \frac{31}{90}$$
.

- 2) Knowing that the two selected cards carry the names of two students who practice different sports, what is the probability that these two students are in the LS section?
- B- Assume, in this part, that the 20 cards carrying the names of the students are placed together in one box B.

Three cards are drawn simultaneously and at random from this box.

- 1) Prove that the probability that the three drawn cards carry the names of three students, who practice the same sport, is $\frac{7}{57}$.
- 2) Let X be the random variable equal to the number of sports practiced by the three students whose names are written on the three drawn cards. Determine the probability distribution of X.

III- (4 points)

In the complex plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points M and M' with respective affixes z and z' such that $z' = (1 + i\sqrt{3})z - 2$.

1) In this part, suppose that z = 1+i.

- a- Show that the point M' belongs to the line with equation y = -x.
- b- Show that triangle OMM' is right at O.
- 2) Let I be the point with affix -2.
 - a- Verify that |z'+2| = 2|z|.
 - b- Prove that as M describes the circle with center O and radius 2, M' describes a fixed circle whose center and radius are to be determined.
- 3) Suppose that z = x+iy and z' = x'+iy' where x, y, x' and y' are real numbers.
 - a- Express x' and y' in terms of x and y.
 - b- Show that if M describes the line with equation $y = -x\sqrt{3}$, then M' describes a straight line to be determined.

IV- (8 points)

Let f be the function defined, on] $-\infty$; $+\infty$ [, by $f(x) = x + 2 - \frac{3}{1 + e^x}$.

- (C) is the representative curve of f in an orthonormal system (O; \vec{i} , \vec{j}).
 - 1) a- Calculate $\lim_{x\to\infty} f(x)$; Show that the line (d₁) with equation y = x 1 is an asymptote to (C) and specify the position of (d₁) relative to (C).
 - b- Calculate $\lim_{x \to +\infty} f(x)$; Show that the line (d₂) with equation y = x + 2 is an asymptote to (C) and specify the position of (d₂) relative to (C).
 - 2) Prove that the point I (0; $\frac{1}{2}$) is a center of symmetry of (C).
 - 3) Show that f is strictly increasing on $] -\infty$; $+\infty$ [and set up its table of variations.
 - 4) Draw (d₁), (d₂) and (C).
 - 5) a Verify that $f(x) = x + 2 \frac{3e^{-x}}{1 + e^{-x}}$.
 - b Calculate the area $A(\lambda)$ of the region bounded by the curve (C), the asymptote (d₂) and the two lines with equations x = 0 and $x = \lambda$, where $\lambda > 0$, then calculate $\lim_{\lambda \to +\infty} A(\lambda)$.
 - 6) Designate by g the inverse function of f on $] -\infty$; $+\infty$ [; (G) is the representative curve of g.
 - a- Verify that E (1+ln2; ln2) is a point on (G).
 - b- Calculate the slope of the tangent to (G) at E.

Q1	Solution	G
1	For t = 0, A (-1, 3, 1) is on (d). Let M(x, y, z) be a point on (Q); then $\overrightarrow{OM} \cdot \left(\overrightarrow{OA} \wedge \overrightarrow{v_d}\right) = 0 \Leftrightarrow (Q): x + y - 2z = 0$	0.5
2a	H (x _H , y _H , z _H) is a point on (d) such that (OH) is perpendicular to (d) ; then $\begin{cases} H \in (d) \\ \overrightarrow{OH} \cdot \overrightarrow{v_d} = 0 \end{cases}$	1
	t-1+t+3+t+1=0, therefore $t = -1$ and $H(-2, 2, 0)$.	
2b	$OH = \sqrt{(-2)^2 + 2^2} = 2\sqrt{2} .$	0.5
3a	(2m-1)(-2) - 2m + 0 + 6m - 2 = 0 The coordinates of H satisfy the equation of (P); hence H belongs to (P).	0.5
3b	(2m-1)(t-1) - m(t+3) + (1-m)(t+1) + 6m-2 = 2 m t - 2m - t + 1 - m t - 3 m + t +1- m t - m + 6 m - 2 = 0. Thus, (d) lies in (P). OR A belongs to (P) and H belongs to (P).	0.5
3c	$d = \frac{ 6m-2 }{\sqrt{(2m-1)^2 + m^2 + (1-m)^2}} = \frac{ 6m-2 }{\sqrt{6m^2 - 6m + 2}}.$	0.5
4	(OH) is perpendicular to (P), then d=OH, so $2\sqrt{2} = \frac{ 6m-2 }{\sqrt{(2m-1)^2 + m^2 + (1-m)^2}}$,	0.5
	thus $12(m^2 - 2m + 1) = 0$, and consequently $m = 1$.	

Q2	Solution	G
	p(S/E) =p(both basketball or both tennis) = $\frac{C_6^2 + C_3^2}{C_{10}^2} = \frac{2}{5}$	1
A1 a	$p(E \cap S) = p(E) \times p(S / E) = \frac{1}{2} \times \frac{2}{5} = \frac{1}{5}.$	
A1 b	$P(S) = P(S \cap E) + P(S \cap \overline{E}) = \frac{1}{5} + \frac{1}{2} \times \frac{C_4^2 + C_4^2 + C_2^2}{C_{10}^2} = \frac{1}{5} + \frac{13}{90} = \frac{31}{90}.$	1
A2	$p(E/\overline{S}) = \frac{p(E \cap \overline{S})}{p(\overline{S})} = \frac{p(E) - P(E \cap S)}{1 - p(S)} = \frac{\frac{1}{2} - \frac{1}{5}}{1 - \frac{31}{90}} = \frac{\frac{3}{10}}{\frac{59}{90}} = \frac{27}{59}.$	0.5
B1	P(3 students practice the same sport) = $\frac{C_5^3 + C_{10}^3 + C_5^3}{C_{20}^3} = \frac{7}{57}$	0.5
B2	$X(\Omega) = \{1, 2, 3\}$ since the three students may practice the same sport, two different or three different sports. $(X = 2) = \frac{C_5^1 \times C_{10}^1 \times C_5^1}{C_5^1 \times C_5^1} = \frac{25}{25} + P(X = 1) = \frac{7}{7} + P(X = 2) = \frac{1}{7} + P(X = 2) = \frac{25}{7}$	1

$$p(X=3) = \frac{C_5^1 \times C_{10}^1 \times C_5^1}{C_{20}^3} = \frac{25}{114} \ ; \ P(X=1) = \frac{7}{57} \quad ; \ P(X=2) = 1 - p(X=1) - p \ (X=3) = \frac{25}{38}.$$

Q3	Solution	G
1a	$z' = -1 - \sqrt{3} + (1 + \sqrt{3})i$. Then $y' = -x'$, hence M' belongs to the line with equation $y = -x$.	0.5
1b	M belongs to the line with equation $y = x$ and M' belongs to the line of equation $y = -x$, then triangle OMM' is right at O. OR : $\overrightarrow{OM}.\overrightarrow{OM'} = 0$, so (OM) and (OM') are perpendicular. OR : $MM'^2 = OM^2 + OM'^2$	0.5

2a	$z'+2=(1+i\sqrt{3})z$; thus $ z'+2 = 2z =2 z $.	0.5
2b	M belongs to a circle with center O and radius 2, then $ z = 2$; thus $ z' + 2 = 4$. As a result $\ \overrightarrow{IM'}\ = 4$, so M' describes the circle of center I and radius 4.	1
3a	$x'=x-\sqrt{3}y-2$ and $y'=y+x\sqrt{3}$.	0.5
3b	$y + x \sqrt{3} = 0$, then y' = 0, therefore z' is real, so M' describes the axis of abscissas.	1

Q4	Solution	G
1a	$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to -\infty} [f(x) - (x - 1)] = \lim_{x \to -\infty} [3 - \frac{3}{1 + e^x}] = \lim_{x \to -\infty} \frac{3e^x}{1 + e^x} = 0$ then the straight line (d ₁) with equation y = x -1 is an asymptote to (C). $f(x) - (x - 1) = \frac{3e^x}{1 + e^x} > 0 \text{ ; then (C) is above (d1).}$	1
1b	$\lim_{x \to +\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} [f(x) - (x+2)] = \lim_{x \to +\infty} -\frac{3}{1 + e^x} = 0.$ then the straight line (d ₂) with equation y = x + 2 is an asymptote to (C). $f(x) - (x+2) = \frac{-3}{1 + e^x} < 0; \text{ then (C) is below (d2).}$	1
2	0 is the center of the domain of definition of f and $f(2a-x) + f(x) = f(-x) + f(x) = 1$, then I is a center of symmetry of (C).	1
3	$f'(x) = 1 + \frac{3e^{x}}{(1+e^{x})^{2}} > 0 \text{ ; for all } x \text{ in }] -\infty \text{ ; } +\infty [\qquad \frac{x - \infty + \infty}{f'(x)} + \frac{f'(x) + \infty}{f(x)}]$ So f is strictly increasing .	1
4		1
5a	$f(x) = x + 2 - \frac{3}{1 + e^x} = x + 2 - \frac{3}{1 + e^x} \times \frac{e^{-x}}{e^{-x}} = x + 2 - \frac{3e^{-x}}{1 + e^{-x}} .$	0.5
5b	$A(\lambda) = \int_{0}^{\lambda} [(x+2) - (x+2 - \frac{3e^{-x}}{1+e^{-x}})]_{0}^{\lambda} dx = \int_{0}^{\lambda} \frac{3e^{-x}}{1+e^{-x}} dx = [-3\ln(1+e^{-x})]_{0}^{\lambda}$ = -3 ln(1 + e^{-\lambda}) + 3ln2 thus, $\lim_{\lambda \to +\infty} A(\lambda) = 3ln2.$	1.5
ба	$f(\ln 2) = \ln 2 + 2 - \frac{3}{1 + e^{\ln 2}} = \ln 2 + 2 - 1 = 1 + \ln 2$ then, g (1+ln2) = ln 2 and E (1+ln 2;ln 2) is a point of (G).	0.5
6b	The slope of the tangent to (G) at E is: $g'(1 + \ln 2) = \frac{1}{f'(\ln 2)} = \frac{1}{1 + \frac{3 \times 2}{(2 + 1)^2}} = \frac{3}{5}.$	0.5