الدورة العادية للعام 2011	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل:ست.

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالقزام بترتيب المسائل الواردة في المسابقة.

I- (2 points)

In the table below, only one of the proposed answers to each question is correct.

Write down the number of each question and give, with justification, the answer corresponding to it.

			Answers	
N°	Questions	a	b	c
	$\int_{-a}^{a} \left(x^5 - \sin x \right) dx =$	$\frac{a^6}{6}$	$\frac{a^6}{24}$	0
2	$arg\left(\frac{e^{i\pi}}{i}\right) =$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π
3	The roots of the equation $z + z ^2 = 3 + i$ are:	1 + i and i	1 + i and $-2 + i$	$ \begin{array}{r} -2 + i \\ \text{and} \\ -i \end{array} $
4	If $u = z - 2\overline{z} + i$, then $i\overline{u} =$	$i\overline{z} + 2iz + 1$	$i\overline{z} - 2iz + 1$	$i\overline{z}-2iz-1$
5	$\lim_{x \to -\infty} \left(x + e^{-x} \right) =$	+∞	0	$-\infty$
6	If $\alpha = \arcsin\left(\sin\frac{7\pi}{5}\right)$, then $\alpha =$	$\alpha = \frac{7\pi}{5}$	$\alpha = -\frac{3\pi}{5}$	$\alpha = -\frac{2\pi}{5}$

II- (2 points)

Consider the cube ABCDEFGH represented in the adjacent figure .

The space is referred to a direct orthonormal system (A; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}).

Designate by I the midpoint of $\left[\text{EF} \right]$ and by K the center of the square ADHE .

b- Calculate the volume of the tetrahedron ABIG.

b- The line (CE) cuts the plane (AFH) at a point L. Calculate the coordinates of L .

c- Prove that L belongs to the line (FK). What does the point L represent for the triangle AFH?

III-(3 points)

Consider two urns U_1 and U_2 .

U₁ contains four red balls and three green balls.

U₂ contains two red balls and one green ball.

A-

We draw at random a ball from U_1 and we put it in U_2 , then we draw at random a ball from U_2 . Designate by X the random variable that is equal to the number of red balls remaining in the urn U_2 after the two preceding draws.

- 1) Prove that the probability P(X = 2) is equal to $\frac{9}{14}$.
- 2) Find the three values of X and determine the probability distribution of X.

B-

In this part, each red ball carries the number 1 and each green ball carries the number -1. We choose at random an urn then we draw simultaneously and at random two balls from the chosen urn. Consider the following events:

E: « The chosen urn is U_1 »

F: « The sum of the numbers carried by the two drawn balls is equal to 0 ».

- 1) a- Calculate the probabilities P(F/E) and $P(F/\overline{E})$.
 - b- Deduce that $P(F) = \frac{13}{21}$.
- 2) Designate by G the event « The sum of the numbers carried by the two drawn balls is equal to -2». Calculate P(G).

IV- (3points)

In the plane referred to an orthonormal system (O; i, j), consider the line (d) with equation x = -4 and the parabola (P) with focus O and directrix (d).

- 1) a-Show that an equation of (P) is $y^2 = 8x + 16$. Determine the vertex S of (P).
 - b- Draw (P).
 - c- Let D be the region bounded by (P) and the axis of ordinates. Calculate the area of D.
 - d- Calculate the volume of the solid generated by the rotation of D about the axis of abscissas.
- 2) Let A(6; 8) be a point on (P).
 - a- Write an equation of the tangent (T_A) at A to (P).
 - b-The line (OA) intersects (P) again at a point B.

Calculate the coordinates of B and write an equation of the tangent (T_B) at B to (P).

2

c-Verify that (T_A) and (T_B) are perpendicular and that they intersect on the directrix of (P).

- 3) Let $M(x_o; y_o)$ be a point on (P), distinct from S.
 - N is the orthogonal projection of M on the tangent through S to (P).
 - The perpendicular through N to the line (MS) intersects the axis of abscissas at I.
 - Show that the abscissa of I is independent of x_0 and y_0 .

V- (3 points)

In the figure above, ABCD and AEFG are two direct rectangles so that $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} \pmod{2\pi}$.

S is the direct plane similitude that transforms B onto E and C onto F;

T is the translation with vector EF;

f is the similitude defined by T o S.

- 1) a- Determine the ratio k and an angle α of S.
 - b- Determine the image of D by S.
 - c- Prove that A is the center of S.
- 2) a- Find f(B) and f(A).
 - b- Specify the ratio and an angle of the similitude f.
 - c- Construct the center W of f.
- 3) The complex plane is referred to a direct orthonormal system (A; $\frac{1}{6}\overrightarrow{AB}$, $\frac{1}{4}\overrightarrow{AE}$).
 - a- Write the complex form of f.
 - b-Deduce the affix of point W.
- 4) Let F_1 be the image of F by S, and for any nonzero natural integer n, let F_{n+1} be the image of F_n by S.

3

Determine the values of n so that A, F_1 and F_n are collinear.

VI- (7 points)

Consider the function f defined over $]-\infty$; 5[by $f(x) = \ln(5-x)$.

Designate by (C) the representative curve of f in an orthonormal system (O; i, j).

- 1) a- Calculate $\lim_{x\to 5} f(x)$, $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to -\infty} \frac{f(x)}{x}$. Interpret, graphically, the results thus obtained.
 - b- Set up the table of variations of f over $]-\infty$; 5[.
- 2) a- Determine an equation of the tangent (T) to (C) at the point with abscissa 4.
 - b- Draw (T) and (C).
 - c- The curve (C) intersects the line with equation y = x at a point with abscissa α . Verify that $1 < \alpha < 2$.
- 3) f has an inverse function f^{-1} . Designate by (C') the representative curve of f^{-1} in the same system of (C).
 - a- Prove that the tangent (T) to (C) is also tangent to (C').
 - b- Draw (C').
- 4) Let h be the function defined on $]-\infty$; 5[by $h(x) = (5-x) \ln(5-x)$.
 - a- Verify that h'(x) + f(x) = -1 and deduce an antiderivative of the function f.
 - b- Designate by $A(\alpha)$ the area of the region bounded by (C), the axis of abscissas and the two lines with equations $x=\alpha$ and x=4. Prove that $A(\alpha)=-\alpha^2+6\alpha-4$.
- 5) Let I be the interval [0; 3].
 - a- Prove that f(I) is included in I.
 - b- Prove, for all x in I, that $|f'(x)| \le \frac{1}{2}$.
 - c- Deduce that, for all x in I, $|f(x) \alpha| \le \frac{1}{2} |x \alpha|$.
- 6) Consider the sequence $\left(U_n\right)$ defined by: $U_0=1$ and , for all $n\geq 0$, $U_{n+1}=f\left(U_n\right)$.
 - a- Prove by mathematical induction that , for all $\ n \geq 0$, U_n belongs to $\ I$.
 - b- Show that, for all $n \ge 0$, $\left| U_{n+1} \alpha \right| \le \frac{1}{2} \left| U_n \alpha \right|$.
 - c- Prove, for all $\ n \geq 0$, that $\left| U_n \alpha \right| \leq \frac{1}{2^n}$ and deduce that the sequence $\left(U_n \right)$ is convergent.

Q1	Solution		G
1	The integral of an odd function on [-a,a] is zero.	c	1
2	$arg\left(\frac{e^{i\pi}}{i}\right) = arg\left(\frac{-1}{i}\right) = arg\left(i\right) = \frac{\pi}{2}$.	b	0.5
3	$x + iy + x^2 + y^2 = 3 + i$, then $y = 1$ and $x^2 + y^2 + x = 3$; $x^2 + x - 2 = 0$. Thus, $x = 1$ or $x = -2$. Therefore, $z = 1 + i$ or $z = -2 + i$. or by verification.	b	1
4	$\overline{\mathbf{u}} = (\overline{\mathbf{z} - 2\overline{\mathbf{z}} + \mathbf{i}}) = \overline{\mathbf{z}} - 2\mathbf{z} - \mathbf{i} \; ; \; i\overline{\mathbf{u}} = i\overline{\mathbf{z}} - 2\mathbf{i}\mathbf{z} + 1$	b	0.5
5	$\lim_{x \to -\infty} \left(x + e^{-x} \right) = \lim_{t \to +\infty} \left(-t + e^{t} \right) = -\lim_{t \to +\infty} e^{t} \left(\frac{t}{e^{t}} - 1 \right) = +\infty$	a	0.5
6	$\alpha = \arcsin\left(\sin\frac{7\pi}{5}\right) = -\frac{2\pi}{5} \text{ since } -\frac{2\pi}{5} \in \left[-\frac{\pi}{2} ; \frac{\pi}{2}\right] \text{ and } \sin\left(-\frac{2\pi}{5}\right) = \sin\frac{7\pi}{5}.$	С	0.5

Q2	Solution	G
1a	$I(\frac{1}{2};0;1) , G(1;1;1) ; \overrightarrow{IG}(\frac{1}{2};1;0) \text{ and } \overrightarrow{IA} (-1/2;0;-1)$ $\overrightarrow{IG} \wedge \overrightarrow{IA} = -\overrightarrow{i} + \frac{1}{2}\overrightarrow{j} + \frac{1}{2}\overrightarrow{k} . \text{ Area of (IGA)} = \frac{1}{2}\sqrt{1+1/4+1/4} = \frac{\sqrt{6}}{4}.$	0.5
1b	$\overrightarrow{AB}(1;0;0)$; $\overrightarrow{AB}.(\overrightarrow{IG} \wedge \overrightarrow{IA}) = -1$ The volume of the tetrahedron ABIG is $V = \frac{1}{6} \overrightarrow{AB}.(\overrightarrow{IG} \wedge \overrightarrow{IA}) = \frac{1}{6}$.	0.5
1c	Let d be the distance of B to plane (AIG). $V = \frac{1}{3} \text{Area of (IGA)} \times d = \frac{1}{3} \cdot \frac{\sqrt{6}}{4} \cdot d \text{ . Thus, } d = \frac{\sqrt{6}}{3}.$	0.5
2a	$\overrightarrow{AF} \wedge \overrightarrow{AH} = -\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$. (AFH): $x + y - z = 0$. OR $\overrightarrow{AM} \cdot \left(\overrightarrow{AF} \wedge \overrightarrow{AH} \right) = 0$	0.5
2b	(CE): $x = t; y = t; z = -t + 1$. (CE) \cap (AFH): $t + t + t - 1 = 0$. So, $t = \frac{1}{3}$ and $L(\frac{1}{3}; \frac{1}{3}; \frac{2}{3})$	1
2c	$\overrightarrow{FL}\left(-\frac{2}{3};\frac{1}{3};-\frac{1}{3}\right)$ and $\overrightarrow{FK}\left(-1;\frac{1}{2};-\frac{1}{2}\right)$, then $\overrightarrow{FL}=\frac{2}{3}\overrightarrow{FK}$. Thus, L belongs to [FK], the median in triangle AFH. Therefore, L is the center of gravity of triangle AFH.	1

Q3	Solution	G
	$X = 2$ occurs when we draw one red ball from U_1 then one red ball from U_2 or one green ball	
A 1	from U_1 then one green ball of U_2 . Thus: $P(X = 2) = \frac{4}{7} \times \frac{3}{4} + \frac{3}{7} \times \frac{2}{4} = \frac{9}{14}$.	1.5
	The values of X are 1, 2 and 3.	
	$X = 1$ occurs when one red ball remains in the urn U_2 . That is drawing a green ball from U_1	
A 2	then a red ball from U_2 . Thus, $P(X=1) = \frac{3}{7} \times \frac{2}{4} = \frac{3}{14}$	1.5
	$X = 3$ occurs when we draw a red ball from U_1 and a green ball from U_2 .	

	$P(X = 3) = \frac{4}{7} \times \frac{1}{4} = \frac{1}{7}$. Or : $P(X = 3) = 1 - \left(\frac{9}{14} + \frac{3}{14}\right) = \frac{1}{7}$.	
B 1a	To get a sum 0, we should draw a red ball and a green ball. $P(F/E) = \frac{4 \times 3}{C_7^2} = \frac{12}{21} = \frac{4}{7} \; ; \; P(F/\overline{E}) = \frac{2 \times 1}{C_3^2} = \frac{2}{3} \; .$	1
B 1b	$P(F) = P(F \cap E) + P(F \cap \overline{E}) = P(E) \times P(F/E) + P(\overline{E}) \times P(F/\overline{E}) = \frac{1}{2} \times \frac{4}{7} + \frac{1}{2} \times \frac{2}{3} = \frac{13}{21}.$	1
	G occurs when we draw two green balls which is only possible from the urn U_1 since the urn	
B2	U ₂ contains only one green ball, thus $P(G) = \frac{1}{2} \times \frac{C_3^2}{C_7^2} = \frac{1}{14}$.	1

Q4	Solution			G
19	1a $MO = d(M \rightarrow (d))$; $MO^2 = d^2(M \rightarrow (d))$; $x^2 + y^2 = (x+4)^2$; $y^2 = 8x + 16$. $y^2 = 8x + 16$; $(y-0)^2 = 8(x+2)$ The vertex is $S(-2; 0)$.			1
1 a				1
	4	1c	$A = 2 \int_{-2}^{0} \sqrt{8x + 16} dx = \frac{1}{6} \left[\sqrt{(8x + 16)^{3}} \right]_{-2}^{0} = \frac{32}{6} u^{2}.$	1
	2-	1d	$V = \pi \int_{-2}^{0} y^{2} dx = \pi \int_{-2}^{0} (8x + 16) dx = 16\pi u^{3}.$	0.5
	-2 2	2a	$2yy' = 8$; $y' = \frac{4}{y}$; $y'_A = \frac{1}{2}$. The equation of (T_A) is $y = \frac{1}{2}x + 5$	0.5
1b	0.5	2b	(OA): $y = \frac{4}{3}x$. The abscissas of the points of intersection of (OA) and (P) verifies the equation: $\frac{16}{9}x^2 = 8x + 16, \ 2x^2 - 9x - 18 = 0;$ $x' = 6 \text{ and } x'' = -\frac{3}{2} = x_B.$ $B(-\frac{3}{2}; -2). \text{ The equation of } (T_B) \text{ is}$ $y + 2 = y'_B(x + \frac{3}{2}); y = -2x - 5$	1
2c	The product of the slopes of the tangents (T_A) and (T_B) is equal to -1 thus (T_A) and (T_B) are perpendicular. Moreover, $\frac{1}{2}x+5=-2x-5$; $x=-4$ and $y=3$, thus (T_A) and (T_B) intersect on the directrix (d).			0.5
3	Let I(a;0) . We have N(-2; y _o); $\overrightarrow{MS}(-2-x_o;-y_o)$; $\overrightarrow{MI}(a+2;-y_o)$ $\overrightarrow{MS} \bullet \overrightarrow{MI} = 0$; $(-2-x_o)(a+2) + y_o^2 = 0$; $(-2-x_o)(a+2) + 8(x_o+2) = 0$; $(x+2_o)(6-a) = 0$; a = 6 ($x_o \ne -2$) Therefore, the abscissa of I is independent of x_0 and y_0 .			1

Q5	Solution	G
1a	$S = sim(k; \alpha); B \xrightarrow{S} E; C \xrightarrow{S} F$ $EF = k BC; k = \frac{3}{4.5} = \frac{2}{3}; \alpha = \left(\overrightarrow{BC}, \overrightarrow{EF}\right) = \left(\overrightarrow{BC}, \overrightarrow{AD}\right) + \left(\overrightarrow{AD}, \overrightarrow{EF}\right) = \frac{\pi}{2} (2\pi)$	1
1b	Triangle EFG is similar to triangle BCD and in the same sense. Thus, $S(D)=G$.	
1c	S(BCDA) is the direct rectangle EFGA, $S(A) = A$, then A is the center of S	1
2a	f(B) = T(S(B)) = T(E) = F; $f(A) = T(S(A)) = T(A) = G$	0.5
2b	$f = similitude of ratio \frac{2}{3}$ and angle $\frac{\pi}{2}$.	0.5
2c	$(\overrightarrow{WB}, \overrightarrow{WF}) = \frac{\pi}{2} \text{ and } (\overrightarrow{WA}, \overrightarrow{WG}) = \frac{\pi}{2};$ W is the point of intersection of the two circles of diameters [BF] and [AG] other than G.	1
3a	f: M(z) \to M'(z'); z' = $\frac{2}{3}$ iz + b; z _G = = $\frac{2}{3}$ iz _A + b; b = -3. The complex form of f is z' = $\frac{2}{3}$ iz - 3.	0.5
3b	$z_W = \frac{2}{3}iz_W - 3$; $3z_W - 2iz_W = -9$; $z_W = \frac{-9}{3 - 2i} = -\frac{27}{13} - \frac{18}{13}i$.	0.5
4	$\begin{split} z_W &= \frac{2}{3} i z_W - 3 \ ; \ 3 z_W - 2 i z_W = -9; \ z_W = \frac{-9}{3-2i} = -\frac{27}{13} - \frac{18}{13} i. \\ \left(\vec{AF_1}, \vec{AF_n} \right) &= \left(\vec{AF_1}, \vec{AF_2} \right) + \left(\vec{AF_2}, \vec{AF_3} \right) + \ldots + \left(\vec{AF_{n-1}}, \vec{AF_n} \right) = (n-1) \frac{\pi}{2} \\ A, F_1 \text{ and } F_n \text{ are collinear for } (n-1) \frac{\pi}{2} = k\pi \ ; \text{ then } n = 2k+1 \text{ where } k \text{ is a natural integer.} (n \text{ is odd)}. \end{split}$	1

Q6	Solution		G	
1a	$\lim_{x \to -\infty} f(x) = +\infty, \lim_{x \to 5} f(x) = -\infty \text{ and } \lim_{x \to \infty} \frac{f(x)}{x} = 0.$ The straight line of equation $x = 5$ is an asymptote to (C) and the curve (C) has a horizontal asymptotic direction at $-\infty$.		1.5	
1b	$f'(x) = \frac{1}{x-5}$ with $x-5 < 0$ over $]-\infty$; 5[.	$\frac{x}{f'(x)}$	-∞ 5 - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1
2a	(C) cuts $x'x$ at the point $A(4;0)$ and $y'y$ at the point $B(0; ln5)$. (T) is tangent at A to (C); (T) : $y = -x + 4$		0.5	

	(C) B B (D)	0.5			
2b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5			
	(C') is symmetric to (C) with respect to the straight line (D) of equation $y = x$.				
	(C) cuts $x'x$ at $A(4;0)$ and admits (T) as a tangent at A. By symmetry with respect to (D), (C') cuts $y'y$ at the point $A'(0;4)$ and admits the				
3a	symmetric of (T) with respect to (D) , as a tangent at A' .	1			
	But $(T) \perp (D)$, thus (T) is the symmetric of itself with respect to (D) .				
21	As a result, (T) is the tangent at A' to (C') . Check the figure part 2b.	1			
3b 4a	(C) and (C') are symmetric with respect to the straight line of equation $y = x$. $h'(x) = -1 - \ell n(5 - x)$; so $h'(x) + f(x) = -1$, therefore, $F(x) = -h(x) - x$.	1			
4 a	$\frac{h(x) - 1 - \epsilon h(3 - x)}{4}, \text{ so } h(x) + f(x) = -1, \text{ therefore, } \Gamma(x) = -h(x) - x.$	1			
4b	b $A(\alpha) = \int_{\alpha}^{4} f(\mathbf{x}) d\mathbf{x} = [-\mathbf{x} - h(\mathbf{x})]_{\alpha}^{4} = \alpha - 4 - (5 - \alpha) \ln(5 - \alpha)$				
	But, $\ell n(5-\alpha) = \alpha$; thus $A(\alpha) = -4 + \alpha + 5\alpha - \alpha^2 = -\alpha^2 + 6\alpha - 4 u^2$.				
5a	f is continuous and strictly decreasing; then $f(I)=[f(3),f(0)]=[\ln 2,\ln 5]\subset I$.				
5b	$f'(x) = \frac{1}{x-5}$ with $x-5 < 0$; then $ f'(x) = \frac{1}{5-x}$. but $0 \le x \le 3$, so $2 \le 5 - x \le 5$ and $\frac{1}{5} \le \frac{1}{5-x} \le \frac{1}{2}$. Consequently, $ f'(x) \le \frac{1}{2}$.	1			
_	Using the mean value inequality, we can write : $ f(x) - f(\alpha) \le \frac{1}{2} x - \alpha $ with $f(\alpha) = \alpha$.	0.5			
5c	therefore, $ f(x) - \alpha \le \frac{1}{2} x - \alpha $.	0.5			
6a					
6b	$\begin{array}{c c} U_{\scriptscriptstyle 0}=1 \text{ ; then } U_{\scriptscriptstyle 0}\in I \text{ .} & \text{ If } U_{\scriptscriptstyle n}\in I \text{ , then } f(U_{\scriptscriptstyle n})\in f(I) \text{ . Hence, } U_{\scriptscriptstyle n+1}\in I \text{ .} \\ \\ U_{\scriptscriptstyle n}\in I \text{ , then } \left f(U_{\scriptscriptstyle n})-\alpha \right \leq \frac{1}{2} \left U_{\scriptscriptstyle n}-\alpha \right \text{ . Consequently, } \left U_{\scriptscriptstyle n+1}-\alpha \right \leq \frac{1}{2} \left U_{\scriptscriptstyle n}-\alpha \right \end{array}$				
	4	0.5			
	$U_0 = 1 \text{ and } 1 < \alpha < 2 \text{ ; then, } -1 < U_0 - \alpha < 0 \text{ and } U_0 - \alpha \le \frac{1}{2^0}.$				
6c	If $\left U_{n} - \alpha\right \le \frac{1}{2^{n}}$, then $\left U_{n+1} - \alpha\right \le \frac{1}{2} \left U_{n} - \alpha\right \le \frac{1}{2^{n+1}}$. Or by using multiplication and simplification.	1.5			
	/ \n				
	$\lim_{x \to +\infty} \left(\frac{1}{2}\right)^n = 0 \; ; \; \text{then} \lim_{x \to +\infty} \left U_n - \alpha \right = 0 \; \text{ and } \lim_{x \to +\infty} U_n = \alpha$				