الاورة الإستثّنائية للعام 2011	الثههادة المتّوسطة	وزارة التربية والتُعليم العالي المديرية (لعامـة للتربية دائرة الامتحانـات
الرقڤ: الاسم:	مسابقة في مـادة الفيزياء المدة ساعة	

This exam is formed of three obligatory exercises in two pages.
 The use of non- programmable calculator is allowed.

First exercise (7 points)

Converging lens

The aim of this exercise is to show evidence of the variation of the size and the position of a real image given by a converging lens with the focal length of this lens.

I - First experiment

We consider the set up of the figure below. $\left(L_{1}\right)$ is a converging lens of focal length $f_{1}=20 \mathrm{~cm}$, whose optical axis is $x^{\prime} x$ and whose foci are F_{1} and F_{1}^{\prime}. $A B$ is a luminous object placed at 30 cm from $\left(L_{1}\right)$.

1. Redraw, on the graph paper using the same scale, the above diagram.
2. a) Trace the image $A_{1} B_{1}$ of $A B$. Justify.
b) Deduce the size of $A_{1} B_{1}$ as well as its distance d_{1} from $\left(L_{1}\right)$.

II - Second experiment

We replace $\left(\mathrm{L}_{1}\right)$ by another converging lens $\left(\mathrm{L}_{2}\right)$ of focal length $\mathrm{f}_{2}=25 \mathrm{~cm}$.
The object AB is kept at the same distance of 30 cm from the lens.

1. Draw, on the graph paper, the new diagram showing on it $\left(L_{2}\right), x^{\prime} x, A B$ and the two foci F_{2} and F_{2}^{\prime} of $\left(L_{2}\right)$.
2. a) Trace the new image $\mathrm{A}_{2} \mathrm{~B}_{2}$ of AB .
b) Deduce the size of $\mathrm{A}_{2} \mathrm{~B}_{2}$ and its distance d_{2} from $\left(\mathrm{L}_{2}\right)$.

III - Conclusion

1. Compare:
a) $\mathrm{A}_{1} \mathrm{~B}_{1}$ and $\mathrm{A}_{2} \mathrm{~B}_{2}$.
b) d_{1} and d_{2}.
2. In order to examine the small details of the object $A B$ we use the lens $\left(L_{2}\right)$. Why?

Study of an electric circuit

Consider:

- Two lamps $\left(L_{1}\right)$ and $\left(L_{2}\right)$ considered as resistors of resistances $R_{1}=60 \Omega$ and $R_{2}=20 \Omega$ respectively carrying the same inscription: 6 V .
- A generator (G) delivering across its terminals, P and N , a constant voltage $\mathrm{U}_{\mathrm{PN}}=12 \mathrm{~V}$.

We intend to use (G) so as to make the two lamps function normally at the same time.

1. Assume that $\left(\mathrm{L}_{1}\right)$ and $\left(\mathrm{L}_{2}\right)$ are connected in series across the terminals of (G) as shown in figure 1 .
a) By applying the law of addition of voltages, show that the current through the circuit must be $\mathrm{I}=0.15 \mathrm{~A}$.
b) Determine, in this case, the voltage across the terminals of each lamp.
c) One of the two lamps has the risk to burn out while the other one gives faint light. Why?
2. For the lamps to function normally, we connect across $\left(\mathrm{L}_{1}\right)$ a resistor (D) of resistance R as shown in figure 2.
a) Determine the value I_{1} of the current through $\left(\mathrm{L}_{1}\right)$ and the value I_{2} of the current through $\left(\mathrm{L}_{2}\right)$.
b) Find, by applying the law of addition of currents, the value I_{3} of the current through the resistor (D).
c) Deduce the value of R.

Fig. 1

Fig. 2

Third exercise (6 points)

Determination of the density of a liquid

Given:

- Atmospheric pressure $\mathrm{P}_{\mathrm{atm}}=76 \mathrm{~cm}$ of mercury;
- Density of mercury $\rho_{\mathrm{Hg}}=13.6 \mathrm{~g} / \mathrm{cm}^{3}$;
- Density of water $\rho_{\text {water }}=1 \mathrm{~g} / \mathrm{cm}^{3}$;
- $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.

I - Atmospheric pressure

We consider a U tube containing water at equilibrium (figure 1).

1. The two points A and B are submitted to the same pressure which is the atmospheric pressure. Calculate, in Pascal, the value of this pressure.
2. The two points A and B are in the same horizontal plane. Justify.

Figure (1)

II - Density of a liquid

In one of the two branches of the same U tube, we pour a quantity of a liquid immiscible with water of density ρ.
At equilibrium, the height of the liquid is $\mathrm{h}=20 \mathrm{~cm}$ and that of water above the surface of separation of the two liquids is $\mathrm{h}_{1}=16 \mathrm{~cm}$ (figure 2).

1. Determine, in terms of ρ, the pressure at point C.
2. Calculate the pressure at point D.
3. The pressure at C and the pressure at D are equal. Why?
4. Deduce the value of ρ.

Figure (2)

مشروع معيار التصحيح دورة العام 2011 الإستثنثائية	الثههادة المتّوسطة	وزارة التربية والتعليم العالثي المديرية العامـة للتربية دائرة الامتحانـات

First exercise (7 points)

Part of the \mathbf{Q}	Answer	Mark
I. 1)	Redrawing with the same scale.	1/2
I. 2)-a)	- Tracing the $1^{\text {st }}$ particular ray $\quad(\mathbf{1} / \mathbf{2})$ - Tracing the $2^{\text {nd }}$ particular ray. $\quad(1 / 2)$ - Construction of the image. $\quad(\mathbf{1} / \mathbf{2})$ - justification $(1 / 4)$ - justification $(1 / 4)$ - justification $(1 / 4)$	21/4
I. 2)-b)	$\mathrm{A}_{1} \mathrm{~B}_{1}=2 \times 2=4 \mathrm{~cm}(1 / 4) \quad ; \quad \mathrm{d}_{1}=6 \times 10=60 \mathrm{~cm}(1 / 4)$	1/2
II.1)	figure	3/4
II.2)-a)	- Tracing the $1^{\text {st }}$ particular ray. $(1 / 2)$ - Tracing the $2^{\text {nd }}$ particular ray. $(\mathbf{1} / \mathbf{2})$ - Construction of the image $\mathrm{A}_{2} \mathrm{~B}_{2} .(1 / 2)$	1112
II.2)-b)	$\mathrm{A}_{2} \mathrm{~B}_{2}=5 \times 2=10 \mathrm{~cm} \quad(1 / 4) \quad ; \quad \mathrm{d}_{2}=15 \times 10=150 \mathrm{~cm} \quad(1 / 4)$	1/2
$\begin{aligned} & \text { III. 1) } \\ & \text { a) } \\ & \hline \end{aligned}$	$\mathrm{A}_{1} \mathrm{~B}_{1}=4 \mathrm{~cm}$ and $\mathrm{A}_{2} \mathrm{~B}_{2}=10 \mathrm{~cm}$. thus : $\mathrm{A}_{2} \mathrm{~B}_{2}>\mathrm{A}_{1} \mathrm{~B}_{1}$	1/4
III. 1) b)	$\mathrm{d}_{1}=60 \mathrm{~cm}$ and $\mathrm{d}_{2}=150 \mathrm{~cm}$. thus: $\mathrm{d}_{2}>\mathrm{d}_{1}$	1/4
III. 2)	We use (L_{2}) since $\mathrm{A}_{2} \mathrm{~B}_{2}>\mathrm{A}_{1} \mathrm{~B}_{1}$	1/2

Second exercise (7 points)

Part of the Q	Answer		Mark
1)-a)	$\begin{align*} & \mathrm{U}_{\mathrm{PN}}=\mathrm{U}_{\mathrm{PA}}+\mathrm{U}_{\mathrm{AB}}+\mathrm{U}_{\mathrm{BC}}+\mathrm{U}_{\mathrm{CN}} \quad(\mathbf{1} / \mathbf{2}) ; \quad\left(\mathrm{U}_{\mathrm{PA}}=\mathrm{U}_{\mathrm{CN}}=0\right) \tag{1/2}\\ & \mathrm{U}_{\mathrm{AB}}=\mathrm{R}_{1} \times \mathrm{I} \text { and } \mathrm{U}_{\mathrm{BC}}=\mathrm{R}_{2} \times \mathrm{I} \quad(\mathbf{1} / \mathbf{2}) \\ & 12=\mathrm{R}_{1} \mathrm{I}+\mathrm{R}_{2} \mathrm{I} \Rightarrow \mathrm{I}=\frac{\mathbf{1 2}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}=\frac{\mathbf{1 2}}{80}=0.15 \mathrm{~A} \tag{1/2} \end{align*}$		2
1)-b)	Across the terminals of $L_{1}: U_{1}=R_{1} I=60 \times 0.15=9 \mathrm{~V}$ Across the terminals of $\mathrm{L}_{2}: \mathrm{U}_{2}=\mathrm{R}_{2} \mathrm{I}=20 \times 0.15=3 \mathrm{~V}$		1
1)c)	For $\mathrm{U}_{1}=9 \mathrm{~V}>6 \mathrm{~V}=\mathrm{U}_{\text {rated }}$. The lamp may burn out For $\mathrm{U}_{2}=3 \mathrm{~V}<6 \mathrm{~V}=\mathrm{U}_{\text {rated }}$. The lamp shines weakly ($\mathbf{1} / \mathbf{2}$)		1
2)-a)	L_{1} and L_{2} function normally, thus $\mathrm{U}_{1}=\mathrm{U}_{2}=6 \mathrm{~V}(1 / 2)$ $\mathrm{U}_{1}=\mathrm{R}_{1} \mathrm{I}_{1} \Rightarrow \mathrm{I}_{1}=\frac{6}{60}=0.1 \mathrm{~A} \quad(1 / 2) ; \quad \mathrm{I}_{2}=\frac{6}{20}=0.3 \mathrm{~A}$	(1/2)	1112
2)-b)	$\begin{align*} & \mathrm{I}_{1}+\mathrm{I}_{3}=\mathrm{I}_{2} \quad(\mathbf{1} / \mathbf{2}) \\ & \mathrm{I}_{3}=0.3-0.1=0.2 \mathrm{~A} \tag{1/2}\\ & \hline \end{align*}$		1
II.2)c)	$\mathrm{U}_{\mathrm{AB}}=\mathrm{R} . \mathrm{I}_{3} \Rightarrow \mathrm{R}=\frac{\mathbf{U}_{\mathrm{AB}}}{\mathbf{I}_{3}}=\frac{\mathbf{U}_{\mathbf{L}_{1}}}{\mathbf{I}_{3}}=\frac{6}{0.2}=30 \Omega$		1/2

Third exercise (6 points)

Part of the Q	Answer	Mark
I.1)	$\begin{aligned} \mathrm{P}_{\mathrm{atm}} & =\rho \times \mathrm{g} \times \mathrm{H} \quad(1 / 2) \\ & =13600 \times 10 \times 0.76=103360 \mathrm{~Pa} \quad(1 / 2) \end{aligned}$	1
I.2)	Since A and B are submitted to the same pressure and are in the same liquid at equilibrium, then they are in the same horizontal plane.	1
II. 1)	$\begin{align*} & \mathrm{P}_{\mathrm{C}}=\rho \mathrm{gh}+\mathrm{P}_{\mathrm{atm}} \tag{1/2}\\ & \mathrm{P}_{\mathrm{C}}=\rho \times 10 \times 0.2+103360 \\ & \mathrm{P}_{\mathrm{C}}=2 \rho+103360 \tag{1/2} \end{align*}$	1
II .2)	$\begin{aligned} \mathrm{P}_{\mathrm{D}} & =\rho_{1} \times \mathrm{g} \times \mathrm{h}_{1}+\mathrm{P}_{\text {atm }} \\ & =1000 \times 10 \times 0.16+103360 \\ & =1600+103360 \\ & =105260 \mathrm{~Pa} \end{aligned}$	1
II .3)	Since C and D are in the same liquid at equilibrium and at the same horizontal plane.	1/2
II .4)	$\begin{aligned} & P_{C}=P_{D} \text { then } 2 \rho+103360=1600+103360 \quad(3 / 4) \\ & 2 \rho\left(\mathrm{~kg} / \mathrm{m}^{3}\right)=1600 \mathrm{~h}_{1}(\mathrm{~m}) \Rightarrow \rho=800 \mathrm{~kg} / \mathrm{m}^{3}(3 / 4) \end{aligned}$	11/2

