الإستثنائية	۲	٠	١,	1	العام	دورة
آپ ۲۰۱۶						

امتحانات الشهادة الثانوية العامة فرع: العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسميّة

		, ,
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ست
الرقم:	المدة: أربع ساعات	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او آختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I-(2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

	Questions	Réponses				
Ų	Questions	a	b	c	d	
1	Si $F(x) = \int_{1}^{x} e^{t^{2}} dt$, alors $F'(2) =$	e^4	$4e^4$	e^{16}	4 e ¹⁶	
2	Si $n \in [-\{0;1\}]$, alors $C_n^2 + C_n^3 + \dots + C_n^{n-1} + C_n^n = [-1]$	$2^{n-1}-n+1$	$2^{n}+n-1$	$2^n - n - 1$	2 ⁿ + n + 1	
3	z et z' sont deux nombres complexes tels que $z \neq -3i$ et z' = $\frac{z+3i}{z-3i}$, alors $ z' $ =	$\frac{1}{2}$	1	2	3	
4	Si $f(x) = \ln(e^x - x)$ et $g(x) = \operatorname{arctg}(2x)$ où x est un réel, alors $(f \circ g)'(0) =$	0	1	2	3	

II-(2,5 points)

On donne dans un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$, les points A(0; -3; 5), B(-2; 0; 1) et la droite (D) définie par les équations paramétriques x = k + 3; y = 4k + 1 et z = 2k + 6 où k est un réel.

- 1) Déterminer un système d'équations paramétriques de la droite (AB).
- 2) Démontrer que (AB) et (D) sont deux droites non coplanaires.
- 3) Vérifier qu'une équation du plan (Q) contenant la droite (AB) et parallèle à la droite (D) est : -2x+z-5=0 .
- 4) a- Trouver un système d'équations paramétriques de la droite (D') passant par A et perpendiculaire à (Q).
 - b- Montrer que (D) et (D') se coupent en un point E dont on déterminera les coordonnées.
- 5) Soit F un point du plan (Q) d'abscisse strictement négative et d'ordonnée nulle. Calculer les coordonnées du point F pour que le tétraèdre AFBE ait un volume égal à 5 unités de volumes.

III-(2,5 points)

Dans le plan rapporté à un repère orthonormé, on donne la droite (Δ) d'équation $x = -\frac{1}{4}$ et les points A(4;2), E(0;1) et F(m;0) où m est un paramètre réel plus petit que 1.

1) Déterminer m pour que $AF = \frac{17}{4}$.

Dans ce qui suit on prend $m = \frac{1}{4}$.

- 2) Démontrer que A se trouve sur la parabole (P) de foyer F et de directrice (Δ) .
- 3) a- Ecrire une équation de (P).
 - b- Tracer (P).
- 4) a- Prouver que la droite (AE) est tangente à (P).
 - b- Calculer l'aire du domaine limité par (P) et les segments [OE] et [AE].
- 5) La droite (AE) coupe la droite (Δ) en L.

Soit (d) la droite passant par L et perpendiculaire à la droite (AL).

Prouver que (d) est la tangente à (P) en un point K dont on déterminera les coordonnées.

IV-(3 points)

Une boite V contient des cartes :

- 20% des cartes sont bleues et les autres sont rouges ;
- 40% des cartes bleues portent des numéros impairs;
- 32% des cartes de la boite portent des numéros impairs.
- 1) On tire au hasard une carte de la boite V.

On considère les évènements suivants :

B: «tirer une carte bleue»

R: «tirer une carte rouge»

I : «tirer une carte portant un numéro impair »

- a- Calculer la probabilité $p(I \cap B)$ et vérifier que $p(I \cap R) = 0,24$.
- b- Déduire p(I/R).
- c- La carte tirée ne porte pas un numéro impair, quelle est la probabilité qu'elle soit rouge ?
- 2) Dans cette partie on suppose qu'il y a 50 cartes dans la boite V.

On tire simultanément et au hasard trois cartes de V et on considère les évènements suivants :

M: « parmi les trois cartes tirées, exactement deux portent des numéros impairs»

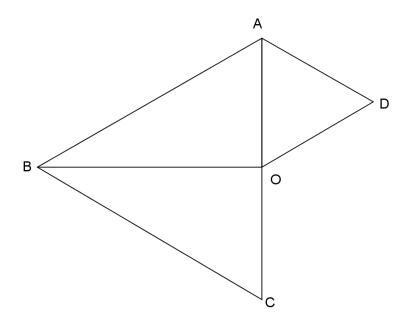
N: « les trois cartes tirées sont bleues»

L : « parmi les trois cartes tirées, exactement deux portent des numéros impairs et une est bleue»

Calculer p(M); p(N/M) et p(L).

V- (3 points)

Dans la figure ci-dessous, ABC et AOD sont deux triangles équilatéraux directs avec O milieu de [AC].



Soit S la similitude plane directe qui transforme B en O et C en D.

- a- Déterminer le rapport k et un angle α de S.
 b- Vérifier que A est le centre de S.
- 2) On considère la transformation R tel que R(B) = C et R(C) = A.
 - a- Montrer que R est une rotation dont on déterminera un angle.
 - b- Déterminer le centre G de R.
- 3) Soit $h = S \circ R$.
 - a- Déterminer h(B) et h(C).
 - b- Déterminer la nature, le centre et le rapport de h.
- 4) On rapporte le plan au repère orthonormé direct $(O; \vec{u}, \vec{v})$ tel que $\overrightarrow{OA} = 2\vec{v}$.
 - a- Déterminer la forme complexe de S.
 - b- Soit (E) l'ellipse d'équation $\frac{x^2}{12} + \frac{y^2}{4} = 1$ et (E') son image par S.

Déterminer une équation de l'axe focal de (E').

VI- (7 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{2e^x}{e^x + 1} - x$ et on désigne par (C) sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}, \vec{j}\right)$.

- 1) a- Déterminer $\lim_{x\to -\infty} f(x)$ et montrer que la droite (d) d'équation y=-x est une asymptote à (C).
 - b- Déterminer $\lim_{x\to +\infty} f(x)$ et montrer que la droite (d') d'équation y=-x+2 est une asymptote à (C).
 - c- Démontrer que la courbe (C) est située entre les deux droites (d) et (d').
- 2) Montrer que le point W(0;1) est le centre de symétrie de la courbe (C).
- 3) a- Montrer que, pour tout réel x, -1 < f'(x) < 0 et dresser le tableau de variations de f.
 - b- Montrer que l'équation f(x) = 0 admet une racine unique α puis vérifier que $1, 6 < \alpha < 1, 7$
 - c-Démontrer que pour tout $x \in [0; \alpha], 0 \le f(x) \le \alpha x$.
- 4) Tracer (d), (d') et (C).
- 5) a- Prouver que f admet une fonction réciproque g dont on déterminera le domaine de définition.
 - b- Déterminer les asymptotes à la courbe (C') de g.
 - c- Ecrire une équation de la droite (T) tangente à (C') en son centre de symétrie.
 - d- Tracer (T) et (C') dans le même repère que (C).
- 6) Soit β l'abscisse du point d'intersection de (C) et (C'). Montrer que l'aire de la région limitée par (C), (C') et les axes de coordonnées est égale à $\left\lceil -4\ln\left(2-2\beta\right)-2\beta^2\right\rceil$ unités d'aires.

مسابقة في مادة الرياضيات المدة: أربع ساعات

مشروع معيار التصحيح

	المدة: أربع ساعات	
Q-I	Réponses	N
1	$f'(x) = e^{x^2}; f'(2) = e^4.$	1
2	$C_n^0 + C_n^1 + C_n^2 + C_n^3 + C_n^4 + \dots + C_n^n = (1+1)^n; C_n^2 + C_n^3 + C_n^4 + \dots + C_n^n = 2^n - 1 - n.$	1
3	$\left z'\right = \left \frac{z+3i}{z-3i}\right = \left \frac{z+3i}{z+3i}\right = 1.$	1
4	$f'(x) = \frac{e^x - 1}{e^x - x}$, $g'(x) = \frac{2}{1 + 4x^2}$, $g(0) = 0$, $g'(0) = 2$; $f'(g(0)) \times g'(0) = 0$. a	1
Q-II	Réponses	N
1	(AB): $x = -2t$; $y = 3t - 3$; $z = -4t + 5$	0,5
2	soit C(3;1;6) un point de (D) ; \overrightarrow{AC} (3;4;1); $\overrightarrow{v}_{(D)}$ (1;4;2); \overrightarrow{AB} (-2;3;-4) \overrightarrow{AC} .($\overrightarrow{V}_{(D)} \wedge \overrightarrow{AB}$) = -60 donc (AB) et (D) sont non coplanaires.	1
3	soit M(x; y; z) un point de (Q); $\overrightarrow{AM} \cdot (\overrightarrow{V_D} \wedge \overrightarrow{AB}) = 0$ donne (Q):	
	-2x + z - 5 = 0	1
4a	(D'): x = -2m; y = -3; z = m+5	0,5
4 b	4k+1=-3; k=-1; E(2;-3;4).	1
5	$F(x;0;2x+5); V = \frac{1}{6} \det(\overrightarrow{AF}; \overrightarrow{AB}; \overrightarrow{AE}) = \frac{1}{6} -15x-30 = 5; x = -4 \text{ ou } x = 0 \text{ (inacc)};$ donc $F(-4;0;-3)$.	1
Q-III	Réponses	N
1	$(4-m)^2 + 4 = \frac{289}{16}$; $m = \frac{1}{4}$ ou $m = \frac{-31}{4}$ inaccep. Donc $m = \frac{1}{4}$	0.5
2	$H\left(-\frac{1}{4};2\right)$ est le projeté orthogonal de A sur la directrice (Δ) . $AF = AH = \frac{17}{4}$	0.5
3a	Sommet; S (0; 0); $p = 2 \times \frac{1}{4} = \frac{1}{2}$. Une équation de (P) est $(y - y_s)^2 = 2\frac{1}{2}(x - x_s)$; $y^2 = x$.	0.5
3b	2-1-0 1-2 3 4 4	0.75

4a	E est le milieu de [FH] et le triangle AFH est isocèle donc (AE) est bissectrice de AFH et tangente en A à (P). ou par vérification (AE): $y = \frac{1}{4}x + 1$	0.75
4b	$\int_{0}^{4} \left[y_{(AE)} - y_{(P)} \right] dx = \frac{8}{3} ua$	1
5	(d): $y = -4x + \frac{1}{16}$; $y_{(P)}^2 = y_{(d)}^2$; $x = \frac{1}{64}$; $K\left(\frac{1}{64}; -\frac{1}{8}\right)$	1
Q-IV	Réponses	N
1a	$p(I \cap B) = P(I/B) \times p(B) = 0, 4 \times 0, 2 = 0, 08$ $p(I \cap R) = p(I) - p(I \cap B) = 0, 32 - 0, 8 = 0, 24.$	1
1b	$p(I/R) = \frac{p(I \cap R)}{p(R)} = \frac{0.24}{0.8} = 0.3$	1
1c	$p(R/\bar{I}) = \frac{p(R \cap \bar{I})}{p(\bar{I})} = \frac{0.7 \times 0.8}{0.68} = \frac{14}{17}$	1
2	$p(M) = \frac{C_{16}^2 \times C_{34}^1}{C_{50}^3} = \frac{51}{245}$ $p(N/M) = \frac{p(N \cap M)}{p(M)} = \frac{\frac{C_4^2 \times C_6^1}{C_{50}^3}}{\frac{51}{245}} = \frac{3}{340}$ $p(L) = \frac{C_4^1 \times C_{12}^1 \times C_{28}^1 + C_6^1 \times C_{12}^2}{C_{50}^3} = \frac{87}{980}$	3
	$p(L) = \frac{1}{1000} = \frac{1}{1000}$	
	C_{50}° 980	
Q-V	Réponses	N
Q-V 1a	$ \frac{\mathbf{R\acute{e}ponses}}{\mathbf{k} = \frac{\mathbf{OD}}{\mathbf{BC}} = \frac{1}{2}. \alpha = \left(\overrightarrow{\mathbf{BC}}; \overrightarrow{\mathbf{OD}}\right) = \frac{\pi}{3} \left(\operatorname{mod} 2\pi\right). $	N 0,5
1a	$ \frac{\mathbf{R\acute{e}ponses}}{\mathbf{k} = \frac{\mathbf{OD}}{\mathbf{BC}} = \frac{1}{2}. \alpha = \left(\overrightarrow{\mathbf{BC}}; \overrightarrow{\mathbf{OD}}\right) = \frac{\pi}{3} \left(\operatorname{mod} 2\pi\right). $	0,5
1a 1b	Réponses $k = \frac{OD}{BC} = \frac{1}{2}$. $\alpha = (\overrightarrow{BC}; \overrightarrow{OD}) = \frac{\pi}{3} \pmod{2\pi}$. $\frac{OA}{BA} = \frac{1}{2} = K$ et $(\overrightarrow{AB}; \overrightarrow{AO}) = \frac{\pi}{3}$.	0,5
1a 1b 2a	Réponses $k = \frac{OD}{BC} = \frac{1}{2}$. $\alpha = (\overrightarrow{BC}; \overrightarrow{OD}) = \frac{\pi}{3} \pmod{2\pi}$. $\frac{OA}{BA} = \frac{1}{2} = K \text{ et } (\overrightarrow{AB}; \overrightarrow{AO}) = \frac{\pi}{3}.$ $BC = CA$ et $(\overrightarrow{BC}; \overrightarrow{CA}) = 2\frac{\pi}{3} \pmod{2\pi}$ alors R est une rotation d'angle $\frac{2\pi}{3}$	0,5
1a 1b 2a 2b		0,5 0,5 1 0,5
1a 1b 2a 2b 3a	Réponses $k = \frac{OD}{BC} = \frac{1}{2}$. $\alpha = (\overrightarrow{BC}; \overrightarrow{OD}) = \frac{\pi}{3} \pmod{2\pi}$. $\frac{OA}{BA} = \frac{1}{2} = K \text{ et } (\overrightarrow{AB}; \overrightarrow{AO}) = \frac{\pi}{3}.$ $BC = CA \text{ et } (\overrightarrow{BC}; \overrightarrow{CA}) = 2\frac{\pi}{3} \pmod{2\pi} \text{ alors } R \text{ est une rotation d'angle } \frac{2\pi}{3}$ le point G intersection des médiatrices des segments $[BC]$ et $[CA]$ $h(B) = S \circ R(B) = S(C) = D$, $h(C) = S \circ R(C) = S(A) = A$.	0,5 0,5 1 0,5 0,5
1a 1b 2a 2b 3a 3b		0,5 0,5 1 0,5 0,5
1a 1b 2a 2b 3a 3b	$\begin{aligned} \mathbf{R\acute{e}ponses} \\ \mathbf{k} &= \frac{\mathrm{OD}}{\mathrm{BC}} = \frac{1}{2}. \alpha = \left(\overline{\mathrm{BC}}; \overline{\mathrm{OD}}\right) = \frac{\pi}{3} (\bmod{2\pi}). \\ \frac{\mathrm{OA}}{\mathrm{BA}} &= \frac{1}{2} = \mathrm{K} \ \text{et} \ \left(\overline{\mathrm{AB}}; \overline{\mathrm{AO}}\right) = \frac{\pi}{3}. \\ \\ \mathrm{BC} &= \mathrm{CA} \ \text{et} \ \left(\overline{\mathrm{BC}}; \overline{\mathrm{CA}}\right) = 2\frac{\pi}{3} (\bmod{2\pi}) \ \text{alors R est une rotation d'angle} \ \frac{2\pi}{3} \\ \\ \mathrm{le \ point \ G \ intersection \ des \ m\'{e}diatrices \ des \ segments \ [\mathrm{BC}] \ \text{et} \ [\mathrm{CA}]} \\ \mathbf{h}(\mathrm{B}) &= \mathrm{S} \circ \mathrm{R}(\mathrm{B}) = \mathrm{S}(\mathrm{C}) = \mathrm{D} \ , \ \mathbf{h}(\mathrm{C}) = \mathrm{S} \circ \mathrm{R}(\mathrm{C}) = \mathrm{S}(\mathrm{A}) = \mathrm{A} \ .} \\ \mathbf{h} &= \mathrm{S} \circ \mathrm{R} = \mathrm{S'}(\mathrm{W}; \frac{1}{2}; \pi) = \mathrm{h} \left(\mathrm{W}; -\frac{1}{2}\right), \ \mathrm{le \ centre \ w \ de \ h \ est \ le \ point \ d'intersection} \\ \mathrm{des \ droites \ (BD) \ et \ (AC)}. \\ \mathbf{S} : \mathbf{z'} - \mathbf{z}_{\mathrm{A}} = \mathbf{a}(\mathbf{z} - \mathbf{z}_{\mathrm{A}}), \ \mathbf{a} = \frac{1}{2} \mathrm{e}^{\mathrm{i}\frac{\pi}{3}} = \frac{1}{4} + \frac{1}{4} \mathrm{i}\sqrt{3}, \ \mathbf{z'} = \left(\frac{1}{4} + \frac{1}{4} \mathrm{i}\sqrt{3}\right) \mathbf{z} + \frac{\sqrt{3}}{2} + \frac{3}{2} \mathrm{i} \ .} \end{aligned}$	0,5 0,5 1 0,5 0,5 1
1a 1b 2a 2b 3a 3b 4a 4b	$R\acute{e}ponses$ $k = \frac{OD}{BC} = \frac{1}{2}. \alpha = \left(\overline{BC}; \overline{OD}\right) = \frac{\pi}{3} \pmod{2\pi}.$ $\frac{OA}{BA} = \frac{1}{2} = K \text{ et } \left(\overline{AB}; \overline{AO}\right) = \frac{\pi}{3}.$ $BC = CA \text{ et } \left(\overline{BC}; \overline{CA}\right) = 2\frac{\pi}{3} \pmod{2\pi} \text{ alors } R \text{ est une rotation d'angle } \frac{2\pi}{3}$ $\text{le point } G \text{ intersection des médiatrices des segments } [BC] \text{ et } [CA]$ $h(B) = S \circ R(B) = S(C) = D, \ h(C) = S \circ R(C) = S(A) = A.$ $h = S \circ R = S'(W; \frac{1}{2}; \pi) = h\left(W; -\frac{1}{2}\right), \text{ le centre w de h est le point d'intersection des droites } (BD) \text{ et } (AC).$ $S : z' - z_A = a(z - z_A), \ a = \frac{1}{2}e^{i\frac{\pi}{3}} = \frac{1}{4} + \frac{1}{4}i\sqrt{3}, \ z' = \left(\frac{1}{4} + \frac{1}{4}i\sqrt{3}\right)z + \frac{\sqrt{3}}{2} + \frac{3}{2}i.$ $(BO') \text{ avec } O' \text{ est le milieu du segment } [OD]$	0,5 0,5 1 0,5 0,5 1 1
1a 1b 2a 2b 3a 3b	$\begin{aligned} \mathbf{R\acute{e}ponses} \\ \mathbf{k} &= \frac{\mathrm{OD}}{\mathrm{BC}} = \frac{1}{2}. \alpha = \left(\overline{\mathrm{BC}}; \overline{\mathrm{OD}}\right) = \frac{\pi}{3} (\mathrm{mod} 2\pi). \\ \frac{\mathrm{OA}}{\mathrm{BA}} &= \frac{1}{2} = \mathrm{K} \ \text{et} \ \left(\overline{\mathrm{AB}}; \overline{\mathrm{AO}}\right) = \frac{\pi}{3}. \\ \mathrm{BC} &= \mathrm{CA} \ \text{et} \ \left(\overline{\mathrm{BC}}; \overline{\mathrm{CA}}\right) = 2\frac{\pi}{3} (\mathrm{mos} 2\pi) \ \text{alors} \mathrm{R} \text{est une rotation} \ \mathrm{d'angle} \frac{2\pi}{3} \\ \mathrm{le} \mathrm{point} \mathrm{G} \mathrm{intersection} \mathrm{des} \mathrm{m\'{e}diatrices} \mathrm{des} \mathrm{segments} [\mathrm{BC}] \mathrm{et} [\mathrm{CA}] \\ \mathrm{h}(\mathrm{B}) &= \mathrm{S} \circ \mathrm{R}(\mathrm{B}) = \mathrm{S}(\mathrm{C}) = \mathrm{D} , \mathrm{h}(\mathrm{C}) = \mathrm{S} \circ \mathrm{R}(\mathrm{C}) = \mathrm{S}(\mathrm{A}) = \mathrm{A} . \\ \mathrm{h} &= \mathrm{S} \circ \mathrm{R} = \mathrm{S'}(\mathrm{W}; \frac{1}{2}; \pi) = \mathrm{h} \left(\mathrm{W}; -\frac{1}{2}\right), \mathrm{le} \mathrm{centre} \mathrm{w} \mathrm{de} \mathrm{h} \mathrm{est} \mathrm{le} \mathrm{point} \mathrm{d'intersection} \\ \mathrm{des} \mathrm{droites} (\mathrm{BD}) \mathrm{et} (\mathrm{AC}). \\ \mathrm{S} : z' - z_{\mathrm{A}} = \mathrm{a}(z - z_{\mathrm{A}}), \mathrm{a} = \frac{1}{2} \mathrm{e}^{\mathrm{i}\frac{\pi}{3}} = \frac{1}{4} + \frac{1}{4} \mathrm{i}\sqrt{3}, z' = \left(\frac{1}{4} + \frac{1}{4} \mathrm{i}\sqrt{3}\right) z + \frac{\sqrt{3}}{2} + \frac{3}{2} \mathrm{i} . \\ \mathrm{(BO')} \mathrm{avec} \mathrm{O'} \mathrm{est} \mathrm{le} \mathrm{milieu} \mathrm{du} \mathrm{segment} [\mathrm{OD}] \end{aligned}$	0,5 0,5 1 0,5 0,5 1
1a 1b 2a 2b 3a 3b 4a 4b	$R\acute{e}ponses$ $k = \frac{OD}{BC} = \frac{1}{2}. \alpha = \left(\overline{BC}; \overline{OD}\right) = \frac{\pi}{3} \pmod{2\pi}.$ $\frac{OA}{BA} = \frac{1}{2} = K \text{ et } \left(\overline{AB}; \overline{AO}\right) = \frac{\pi}{3}.$ $BC = CA \text{ et } \left(\overline{BC}; \overline{CA}\right) = 2\frac{\pi}{3} \pmod{2\pi} \text{ alors } R \text{ est une rotation d'angle } \frac{2\pi}{3}$ $\text{le point } G \text{ intersection des médiatrices des segments } [BC] \text{ et } [CA]$ $h(B) = S \circ R(B) = S(C) = D, \ h(C) = S \circ R(C) = S(A) = A.$ $h = S \circ R = S'(W; \frac{1}{2}; \pi) = h\left(W; -\frac{1}{2}\right), \text{ le centre w de h est le point d'intersection des droites } (BD) \text{ et } (AC).$ $S : z' - z_A = a(z - z_A), \ a = \frac{1}{2}e^{i\frac{\pi}{3}} = \frac{1}{4} + \frac{1}{4}i\sqrt{3}, \ z' = \left(\frac{1}{4} + \frac{1}{4}i\sqrt{3}\right)z + \frac{\sqrt{3}}{2} + \frac{3}{2}i.$ $(BO') \text{ avec } O' \text{ est le milieu du segment } [OD]$	0,5 0,5 1 0,5 0,5 1 1

1b	$\lim_{x \to +\infty} f(x) = -\infty \text{ et } \lim_{x \to +\infty} (f(x) + x - 2) = \lim_{x \to +\infty} \frac{-2}{e^x + 1} = 0 \text{ donc (d)} : y = -x + 2 \text{ est}$	1
	une asymptote à (C).	
1c	$(f(x)+x) = \frac{2e^x}{e^x + 1} > 0 \text{ donc (C) est au-dessus de (d).}$ $(f(x)+x-2) = \frac{-2}{e^x + 1} < 0 \text{ donc (C) est au-dessous de (d').}$ $par suite (C) est située entre les deux droites (d) et (d').$	1
2	$f(x) + f(-x) = \frac{2e^{x}}{e^{x} + 1} - x + \frac{2e^{-x}}{e^{-x} + 1} + x = 2$	1
3a	$f(x) + f(-x) = \frac{2e^{x}}{e^{x} + 1} - x + \frac{2e^{-x}}{e^{-x} + 1} + x = 2$ $f'(x) = \frac{-e^{-2x} - 1}{(e^{x} + 1)^{2}} < 0 \text{ et } f'(x) + 1 = \frac{2e^{x}}{(e^{x} + 1)^{2}} > 0.$ $\frac{x - \infty}{f'(x)} - \frac{+\infty}{f(x)} + \infty$	1.5
3b	f est continue strictement décroissante de $+\infty$ à $-\infty$ donc l'équation $f(x) = 0$ admet une racine unique α et puisque $f(1,6) \times f(1,7) = 0,064 \times (-0,0089) < 0$ alors $1,6 < \alpha < 1,7$.	1
3c	$ -1 < f'(x) < 0 < 1 \Rightarrow f'(x) < 1 \text{ et } f \text{ est continue sur } [-1,+1] \text{ et dérivable sur }]-1,+1[$ alors $ \left \frac{f(x) - f(\alpha)}{x - \alpha} \right < 1 \text{ ; } f(\alpha) = 0 \text{ et } f(x) \ge 0 \text{ pour } x \le \alpha \text{ ; alors } 0 \le f\left(x\right) \le \alpha - x $	1
4	(C) (d) 3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1
5a	f continue strictement décroissante sur \square donc admet une fonction réciproque g définie sur \square	1
5b	(d) et (d') car ces deux droites sont perpendiculaires à la première bissectrice.	1
5c	$g'(2) = \frac{1}{f'(0)} = -2; (T) : y = -2x + 2$	1
5d	figure	1
6	A cause de la symétrie par rapport à la premiere bissectrice, l'aire du domaine demandé est le double de l'aire du domaine limité par (C), l'axe des ordonnées et la première bissectrice. $A = 2\int_0^\beta \left[f(x) - x\right] dx = 2\left[\ln(1 + e^x) - x^2\right]_0^\beta = 2\left[2\ln(1 + e^\beta) - \beta^2 - 2\ln 2\right] \text{ or } f(\beta) = \beta \ ;$ $\frac{2e^\beta}{1 + e^\beta} = 2\beta \ ; \ e^\beta = \frac{\beta}{1 - \beta} \ ; \ A = -4\ln(1 - \beta) - 2\beta^2 - 2\ln 2 = \left[-4\ln\left(2 - 2\beta\right) - 2\beta^2\right] u.a.$	1.5