المديريـة العامة للتربيـية
دائرة الامتحانـات الرسمية

الاسم:	مسابقة في الثقافة العلمية: مادة الفيزياء
الرقم:	المدة ساعة واحدة

This exam is formed of three exercises in two pages.
 The use of a non-programmable calculator is recommended.

First exercise: (7 points)

The fall of a parachutist

A parachutist (S), of total mass $\mathrm{M}=100 \mathrm{~kg}$, falls without initial velocity from a stationary helicopter at an altitude of $h_{A}=1000 \mathrm{~m}$. When the parachutist reaches a speed of $40 \mathrm{~m} / \mathrm{s}$ at an altitude $\mathrm{h}_{\mathrm{B}}=920 \mathrm{~m}$, he opens his parachute and then reaches the ground with a speed of $6 \mathrm{~m} / \mathrm{s}$.

Take:

- the horizontal plane passing through the ground as a

- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1) The parachutist is at the altitude $h_{A}=1000 \mathrm{~m}$.

a) Calculate the gravitational potential energy of the system [(S), Earth].
b) Determine the mechanical energy of the system [(S), Earth].
2) The parachutist is at the altitude $\mathrm{h}_{\mathrm{B}}=920 \mathrm{~m}$.
a) Calculate the gravitational potential energy of the system [(S), Earth].
b) Calculate the kinetic energy of (S).
c) Deduce the mechanical energy of the system [(S), Earth].
3) Determine the mechanical energy of the system [(S), Earth] when (S) reaches the ground.
4) a) Specify in which phase of fall, before or after opening the parachute, there is a loss of mechanical energy.
b) In what form of energy, does this loss appear?

Second exercise: (7 points)

Scintigraphy

Given:

$\mathrm{m}\left({ }_{79}^{198} \mathrm{Au}\right)=197.9248 \mathrm{u}$	$\mathrm{m}\left({ }_{\mathrm{z}}^{\mathrm{A}} \mathrm{Hg}\right)=197.9228 \mathrm{u}$	$\mathrm{m}\left({ }_{-1}^{0} \mathrm{e}\right)=5.5 \times 10^{-4} \mathrm{u}$
speed of light in vacuum: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$	

The gold $\left({ }_{79}^{198} \mathrm{Au}\right)$ is a β^{-}emitter. It disintegrates according to the following reaction :

$$
{ }_{79}^{198} \mathrm{Au} \rightarrow{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{Hg}+{ }_{-1}^{0} \mathrm{e}+\gamma
$$

1) a) Indicate the nature of the radiation γ.
b) Determine Z and A in the above reaction, indicating the laws used.
2) Determine, in joule, the energy E liberated by the disintegration of one nucleus of gold 198.
3) In a scintigraphy session for a liver failure, the patient is injected by a small quantity of gold 198 containing $\mathrm{n}=3 \times 10^{12}$ nuclei. Show that the energy liberated by the disintegration of the n nuclei of gold 198 is $\mathrm{E}_{1} \approx 0.65 \mathrm{~J}$.
4) a) Calculate the energy E^{\prime} absorbed by the liver knowing that $E^{\prime}=\frac{E_{1}}{2}$.
b) Calculate the absorbed dose by the liver whose mass is 0.75 kg .
c) Deduce, in sievert (Sv), the physiological equivalent of dose (ED) knowing that the Relative Biological Efficiency of this radiation is R.B.E $=1$.

Third exercise: (6 points)

Scientists

Read carefully the following text and answer the question

«Tycho Brahe invented several measuring instruments with which he performed invaluable observations with the naked eye. Johannes Kepler, assistant of Tycho Brahe, used the data of positions collected by Tycho Brahe and published the three empirical laws of the planetary motion... Later on, Issac Newton stated a universal law that confirmed the three laws of Kepler ...»

Questions

1) Pick up from the text the statement that shows the contribution of Tycho Brahe in astronomy.
2) Earth and Saturn, two planets, revolve around the Sun. The average distance $\left(\mathrm{d}_{\mathrm{E}}\right)$ between the Earth and the Sun is less than the average distance $\left(\mathrm{d}_{\mathrm{s}}\right)$ between Saturn and the Sun.
Compare, with justification, the period of revolution of the Earth $\left(\mathrm{T}_{\mathrm{E}}\right)$ to that of Saturn $\left(\mathrm{T}_{\mathrm{S}}\right)$ according to Kepler's third law.
3) Indicate the form of the trajectories described by the planets around the Sun, according to Kepler's first law.
4) State Kepler's second law.
5) a) Name the law established by Issac Newton that confirms the three laws of Kepler.
b) State this law.
6) Name a scientist not mentioned in the text that contributed to the development of astronomy in the $16^{\text {th }}$ and $17^{\text {th }}$ century.

 	امتحانـات الثشهادة الثثانوية (لعامة الفروع : إجتماع و إقتصاد و آداب و إنسانيات	وزارةٌ التربيةّ والتعليم العالكي المديريـة العامة للتربية دائرة الامتحانـات
الالرقم:	مسابقة في مادة الفيزياء المدة ساعة	مشروع معيار التصحيح

First exercise: (7 points)

Part	Answer	Mark
	$\begin{aligned} & \mathrm{PE}_{\mathrm{g}}(\mathrm{~A})=\mathrm{Mgh}_{\mathrm{A}} \\ & \Rightarrow \mathrm{PE}_{\mathrm{g}}(\mathrm{~A})=100 \times 10 \times 1000 \Rightarrow \mathrm{PE}_{\mathrm{g}}(\mathrm{~A})=1000000 \mathrm{~J} \end{aligned}$	1
1.b	$\mathrm{ME}(\mathrm{~A})=\mathrm{KE}(\mathrm{~A})+\mathrm{PE}_{\mathrm{g}}(\mathrm{~A})$ But the $\operatorname{KE}(A)=0$ (falls without of initial velocity) $\Rightarrow \mathrm{ME}(\mathrm{~A})=1000000 \mathrm{~J}$	11/2
2.a	$\begin{aligned} & \mathrm{PE}_{\mathrm{g}}(\mathrm{~B})=\mathrm{Mgh}_{\mathrm{B}} \\ & \Rightarrow \mathrm{PE}_{\mathrm{g}}(\mathrm{~B})=100 \times 10 \times 920 \\ & \Rightarrow \mathrm{PE}_{\mathrm{g}}(\mathrm{~B})=920000 \mathrm{~J} \end{aligned}$	1/2
2.b	$\begin{aligned} & \mathrm{KE}(\mathrm{~B})=\frac{1}{2} \mathrm{MV}^{2} \\ & \Rightarrow \mathrm{KE}(\mathrm{~B})=\frac{1}{2} \times 100 \times(40)^{2} \\ & \Rightarrow \mathrm{KE}(\mathrm{~B})=80000 \mathrm{~J} \end{aligned}$	1
$2 . \mathrm{c}$	$\mathrm{ME}(\mathrm{B})=\mathrm{KE}(\mathrm{B})+\mathrm{PE}_{\mathrm{g}}(\mathrm{B}) \Rightarrow \mathrm{ME}(\mathrm{B})=1000000 \mathrm{~J}$	1
3	$\begin{aligned} & \mathrm{ME}_{\text {Ground }}=\mathrm{KE}_{\text {Ground }}+\mathrm{PE}_{\mathrm{g}(\text { Ground })} \\ & \mathrm{PE}_{\mathrm{g}(\text { Ground })}=0 \text { (on the reference) } \\ & \mathrm{KE}_{\text {Ground }}=\frac{1}{2} \mathrm{M} \mathrm{~V}_{\text {Ground }}^{2} \Rightarrow \mathrm{KE}_{\text {Ground }}=\frac{1}{2} \times 100 \times(6)^{2} \\ & \Rightarrow \mathrm{KE}_{\text {Ground }}=1800 \mathrm{~J} \Rightarrow \mathrm{ME}(\mathrm{~A})=1800 \mathrm{~J} \end{aligned}$	1
4.a	After opening, because $\mathrm{ME}(\mathrm{B})>\mathrm{ME}_{\text {Ground }}$	1/2
4.b	Heat or thermal energy.	1/2

Second exercise: (7 points)

Part	Answer	Mark
1.a	Electromagnetic radiation	1/2
1.b	Conservation of mass number: $\mathrm{A}=198$ Conservation of charge number: $Z=80$	1
2	$\begin{aligned} & \Delta \mathrm{m}=\mathrm{m}_{\text {before }}-\mathrm{m}_{\text {after }} \\ & \Rightarrow \Delta \mathrm{m}=197.9248-\left(197.9228+5.5 \times 10^{-4}\right) \mathrm{u} \\ & \Rightarrow \Delta \mathrm{~m}=1.45 \times 10^{-3} \mathrm{u} \\ & \Rightarrow \Delta \mathrm{~m}=1.45 \times 10^{-3} \times 1.66 \times 10^{-27}=2.407 \times 10^{-30} \mathrm{~kg} \\ & \mathrm{E}=\Delta \mathrm{m} \cdot \mathrm{c}^{2}=2.407 \times 10^{-30} \times 9 \times 10^{16}=2.16 \times 10^{-13} \mathrm{~J} \end{aligned}$	2
3	$\mathrm{E}_{1}=2.16 \times 10^{-13} \times 3 \times 10^{12}=0.648 \mathrm{~J}$	1
$4 . \mathrm{a}$	$\mathrm{E}^{\prime}=0.648 \times 0.5=0.324 \mathrm{~J}$	1/2
4.b	$\mathrm{D}=\frac{\mathrm{E}}{\mathrm{M}}=\frac{0.324}{0.75} \approx 0.432 \mathrm{~Gy} .$	1
$4 . \mathrm{c}$	$\mathrm{ED}=\mathrm{D} \times$ R. $\mathrm{B} . \mathrm{E}=0.432 \times 1=0.432 \mathrm{~Sv}$.	1

Third exercise: (6 points)

Part	Answer	Mark
$\mathbf{1}$	Tycho Brahe invented several measuring instruments with which he performed invaluable observations with the naked eye.	1
$\mathbf{2}$	$\mathrm{T}_{\mathrm{S}}>\mathrm{T}_{\mathrm{E}}$ since $\mathrm{d}_{\mathrm{S}}>\mathrm{d}_{\mathrm{E}}$ because according to Kepler's third law : as the average distance between the planet and the sun increases , the period of revolution of the planet increases	1
$\mathbf{3}$	Ellipse	$1 / 2$
$\mathbf{4}$	The speed of the planet decreases as the distance between the planet and the sun increases.	1
$\mathbf{5 . a}$	Law of universal gravitational.	$1 / 2$
$\mathbf{5 . b}$	Any two bodies attract each other with a force that varies with the inverse of the square of the distance between them and with the product of their masses	$11 / 2$
$\mathbf{6}$	Galileo Galilei	$1 / 2$

