الدورة العادية للعام 2011	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعة	

This exam is formed of three obligatory exercises in two pages. The use of non-programmable calculators is allowed.

First exercise (7 points) Refraction and total reflection of light

The aim of this exercise is to study the path of a luminous ray from a transparent medium (1) into a transparent medium (2), One of them is glass and the other is air.

The limiting angle of refraction of the system (glass- air) is $i_L = 42^{\circ}$.

- 1) We send a luminous ray S_1I in medium (1) at an angle of incidence i_1 . It emerges into medium (2) along the ray IR_1 that forms an angle i_2 with the normal NN' (adjacent figure).
 - **a**) Give the name of the physical phenomenon that the ray S_1I undergoes at I.
 - **b**) S_1I represents the incident ray. What does IR_1 represent?
 - **c**) Compare i_1 and i_2 .
 - **d**) i)The medium (2) is more refractive than medium (1). Justify. ii) The medium (2) is then glass. Why?
- 2) We send now, in the medium (2), a light ray S_2I that forms with the normal an angle of incidence $i_3 = 42^\circ$.
 - a) The ray emerges grazing the surface of separation. Why?
 - **b**) Give the value of the angle of refraction i_4 corresponding to i_3 .
 - c) Draw the corresponding sketch.
- 3) We send now, in the medium (2), another ray S₃I that forms with the normal an angle of incidence i' = 50°.
 a) The ray S₃I undergoes total reflection. Why?
 - **b**) Determine the value of the angle of reflection r' corresponding to i'.

Second exercise (7 points)

Electric power

The circuit of the adjacent figure is formed of:

- a generator G delivering across its terminals a constant voltage U_{AB} = 12 V ;
- two resistors of resistances $R_1 = 30 \Omega$ and $R_2 = 60 \Omega$.

We designate by I the current in the main branch, by I_1

the current traversing (R_1) and by I_2 the current traversing (R_2) .

- a) Reproduce the adjacent figure and indicate on it the direction of the currents in all branches.
 - **b**) $U_{AB} = U_{CD} = U_{MN} = 12$ V. Why?
 - c) Determine the value of I_1 and that of I_2 . Deduce that I = 0.6 A.

2- a) Knowing that $U_{AB} = RI$, calculate the value of $\frac{1}{P}$.

b) Find the value of the expression $: \frac{1}{R_1} + \frac{1}{R_2}$.

- c) Deduce the relation among R₁, R₂ and R.
- 3- a) Calculate the value of the electric power P_1 consumed by (R_1) and P_2 consumed by (R_2) .
 - **b**) The electric power P_e delivered by G is given by: $P_e = U_{AB}I$.
 - i) Calculate the value of $P_{e.}$.
 - ii) Find the relation among $P_{e,}\,P_{1}\,\text{and}\,P_{2}$.

Third exercise (6 points) Determination of the volume of a solid

Consider a solid (S) of density $\rho_S = 1 \text{ g/cm}^3$. (S) is immersed in a liquid of density ρ . (S) is in equilibrium and the volume of the immersed part is V_i (adjacent figure).

1-(S) floats on the surface of a liquid.

- **a**) Name the two forces acting on (S).
- **b**) Tell, for each of the two forces, whether it is a contact force or an action from a distance force.
- c) Give the line of action and the direction of each of these two forces.
- **d**) Write down the vector relation between these two forces.
- e) Reproduce the figure and represent, without a scale, these two forces.
- 2- We repeat the experiment by putting (S) successively in different liquids. The adjacent graph represents the variation of V_i as a function of ρ .
 - **a)** According to the graph, does the volume of the immersed part increase or decrease when the density of the liquid increases?
 - **b)** For $\rho = 1$ g/cm³, (S) is totally immersed in the liquid. Why?

2

c) Deduce graphically the volume of (S).

الدورة العادية للعام 2011	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية
		دائره الامتحابات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعة	مشروع معيار التصحيح

Answer the three following exercises:

First exercise (7 points)

Part of the Q	Answer	Mark
1. a	The refraction of light.	1
1.b	IR_1 is the refracted ray.	0.5
1.c	According to the figure, we find $i_2 < i_1$.	0.5
1.d.i	The refracted ray is closer to the normal than the incident ray $(i_2 < i_1)$. The medium (2) is then more refractive than the medium (1).	1
1.d.ii	The glass is more refractive than the air, therefore medium (2) is glass.	0.5
2.a	Since $i_3 = 42^\circ = i_{L_1}$, the refracted ray grazes the surface of separation.	1
2.b	$i_4 = 90^{\circ}$	0.5
2.c	Sketch	1
3. a	Because the angle of incidence is greater than the limiting ($i=50^{\circ}>42^{\circ}$)	0.5
3.b	The angle of incidence is equal to the angle of reflection : $r' = i' = 50^{\circ}$	0.5

Second exercise (7 points)

Part of	Answer	Mark
the Q		
1. a	Reproduction + directions	0.5
1.b	$U_{AB} = U_{CD} = U_{MN} = 12$ V according to the law of uniqueness of voltage in a parallel circuit.	0.5
1.c	$\begin{split} U_{CD} &= R_1 I_1 \ \text{thus} \ I_1 = 0.4 \ \text{A.} \ (0.75) \\ U_{MN} &= R_2 I_2 \ \text{thus} \ I_2 = 0.2 \ \text{A.} \ (0.5) \\ I &= I_1 + I_2 = 0.6 \ \text{A.} \ (0.75) \end{split}$	2
2.a	$\frac{1}{R} = \frac{0.6}{12} = 0.05$	0.5
2.b	$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{30} + \frac{1}{60} = \frac{1}{20} = 0.05$	0.5
2.c	$\frac{1}{R} = 0.05$ and $\frac{1}{R_1} + \frac{1}{R_2} = 0.05$, therefore $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	0.5
3. a	$ P_1 = U_{CD}.I_1 = 12 \times 0.4 = 4.8 \ W \ (0.75) \\ P_2 = U_{MN}.I_2 = 12 \times 0.2 = 2.4 \ W \ (0.5) $	1.25
3.b.i	$P_e = U_{AB}.I = 12 \times 0.6 = 7.2 \text{ W}$	0.5
3.b.ii	$P_1 + P_2 = 4.8 + 2.4 = 7.2 W$ Thus $P_e = P_1 + P_2$	0.75

Third exercise (6 points)

Part of the O	Answer	Mark
N° Q	Answer	Marking Scheme
1.a	Weight of the solid. (0.5) Archimedes up thrust force.(0.5)	1
1.b	Weight of the solid: action from a distance. (0.5) Archimedes up thrust force: contact force.(0.5)	1
1.c	Weight : vertical line of action and downward direction;(0.25,0.25) Up thrust: vertical line of action and upward direction;(0.25,0.25)	1
1.d	(S) in equilibrium, then : $\overrightarrow{W} + \overrightarrow{F} = \overrightarrow{0}$	0.5
1.e	(0.5 for each for force) $\vec{F} \uparrow (S)$ \vec{P}	1
2.a	According to the graph, we notice that the immersed volume decreases when the density of the liquid increases	0.5
2.b	Because $\rho = \rho_s$	0.5
2.c	For $\rho = 1 \text{ g/cm}^3$, we find $V_i = V_s = 200 \text{ cm}^3$.	0.5