الدورة العاديةّ للعام	الثّهادة المتوسطة	وزارة التربيةّ والتعليم العالـي المديرية العامـة للتربية دائرة الامتحاتـات
الرقم:	مسابقة في مـادة الفيزياء المدة ساعة	

This exam is formed of three obligatory exercises in two pages.
 The use of non-programmable calculators is allowed.

First exercise (7 points) Refraction and total reflection of light

The aim of this exercise is to study the path of a luminous ray from a transparent medium (1) into a transparent medium (2), One of them is glass and the other is air.
The limiting angle of refraction of the system (glass- air) is $i_{L}=42^{\circ}$.

1) We send a luminous ray $S_{1} I$ in medium (1) at an angle of incidence i_{1}. It emerges into medium (2) along the ray IR_{1} that forms an angle i_{2} with the normal NN^{\prime} (adjacent figure).
a) Give the name of the physical phenomenon that the ray $\mathrm{S}_{1} \mathrm{I}$ undergoes at I .
b) $\mathrm{S}_{1} \mathrm{I}$ represents the incident ray. What does IR_{1} represent?
c) Compare i_{1} and i_{2}.
d) i)The medium (2) is more refractive than medium (1). Justify. ii) The medium (2) is then glass. Why?
2) We send now, in the medium (2), a light ray $S_{2} I$ that forms with the normal an angle
 of incidence $i_{3}=42^{\circ}$.
a) The ray emerges grazing the surface of separation. Why?
b) Give the value of the angle of refraction i_{4} corresponding to i_{3}.
c) Draw the corresponding sketch.
3) We send now, in the medium (2), another ray $S_{3} I$ that forms with the normal an angle of incidence $i^{\prime}=50^{\circ}$.
a) The ray $S_{3} I$ undergoes total reflection. Why?
b) Determine the value of the angle of reflection r^{\prime} corresponding to i^{\prime}.

Second exercise (7 points)

Electric power

The circuit of the adjacent figure is formed of:

- a generator G delivering across its terminals a constant voltage $\mathrm{U}_{\mathrm{AB}}=12 \mathrm{~V}$;
- two resistors of resistances $\mathrm{R}_{1}=30 \Omega$ and $\mathrm{R}_{2}=60 \Omega$.

We designate by I the current in the main branch, by I_{1} the current traversing $\left(\mathrm{R}_{1}\right)$ and by I_{2} the current traversing $\left(\mathrm{R}_{2}\right)$.
1- a) Reproduce the adjacent figure and indicate on it the direction of the currents in all branches.
b) $\mathrm{U}_{\mathrm{AB}}=\mathrm{U}_{\mathrm{CD}}=\mathrm{U}_{\mathrm{MN}}=12 \mathrm{~V}$. Why?
c) Determine the value of I_{1} and that of I_{2}. Deduce that $\mathrm{I}=0.6 \mathrm{~A}$.

2- a) Knowing that $U_{A B}=R I$, calculate the value of $\frac{1}{R}$.
b) Find the value of the expression : $\frac{1}{R_{1}}+\frac{1}{R_{2}}$.
c) Deduce the relation among R_{1}, R_{2} and R.

3- a) Calculate the value of the electric power P_{1} consumed by $\left(R_{1}\right)$ and P_{2} consumed by $\left(R_{2}\right)$.
b) The electric power P_{e} delivered by G is given by: $P_{e}=U_{A B} I$.
i) Calculate the value of P_{e}.
ii) Find the relation among P_{e}, P_{1} and P_{2}.

Third exercise (6 points) Determination of the volume of a solid

Consider a solid (S) of density $\rho_{\mathrm{S}}=1 \mathrm{~g} / \mathrm{cm}^{3}$. (S) is immersed in a liquid of density ρ. (S) is in equilibrium and the volume of the immersed part is V_{i} (adjacent figure).

1-(S) floats on the surface of a liquid.
a) Name the two forces acting on (S).
b) Tell, for each of the two forces, whether it is a contact force or an action from a distance force.
c) Give the line of action and the direction of each of these two forces.
d) Write down the vector relation between these two forces.
e) Reproduce the figure and represent, without a scale, these two forces.

2- We repeat the experiment by putting (S) successively in different liquids. The adjacent graph represents the variation of V_{i} as a function of ρ.
a) According to the graph, does the volume of the immersed part increase or decrease when the density of the liquid increases?
b) For $\rho=1 \mathrm{~g} / \mathrm{cm}^{3},(\mathrm{~S})$ is totally immersed in the liquid. Why?
c) Deduce graphically the volume of (S).

الاورة العادية للعام	الثشهادة المتوسطة	وزارة التربيةّ والتعليم العالـي المديرية العامـة للتربية دائرة الامتحانـات
الرقم: الاسم:	مسابقة في مادة الفيزياء المدة ساعة	مشروع معيار التصحيح

Answer the three following exercises:

First exercise (7 points)

Part of the \mathbf{Q}	Answer	Mark
1.a	The refraction of light.	1
1.b	IR_{1} is the refracted ray.	0.5
1.c	According to the figure, we find $\mathrm{i}_{2}<\mathrm{i}_{1}$.	0.5
1.d.i	The refracted ray is closer to the normal than the incident ray ($\mathrm{i}_{2}<\mathrm{i}_{1}$). The medium (2) is then more refractive than the medium (1).	1
1.d.ii	The glass is more refractive than the air, therefore medium (2) is glass.	0.5
$2 . a$	Since $i_{3}=42^{\circ}=i_{L}$, the refracted ray grazes the surface of separation.	1
2.b	$\mathrm{i}_{4}=90^{\circ}$	0.5
$2 . c$	Sketch	1
3.a	Because the angle of incidence is greater than the limiting ($\mathrm{i}=50^{\circ}>42^{\circ}$)	0.5
3.b	The angle of incidence is equal to the angle of reflection : $\mathrm{r}^{\prime}=\mathrm{i}^{\prime}=50^{\circ}$	0.5

Second exercise (7 points)

Part of the Q	Answer	Mark
1.a	Reproduction + directions	0.5
1.b	$\mathrm{U}_{\mathrm{AB}}=\mathrm{U}_{\mathrm{CD}}=\mathrm{U}_{\mathrm{MN}}=12 \mathrm{~V}$ according to the law of uniqueness of voltage in a parallel circuit.	0.5
1.c	$\begin{aligned} & \mathrm{U}_{\mathrm{CD}}=\mathrm{R}_{1} \mathrm{I}_{1} \text { thus } \mathrm{I}_{1}=0.4 \mathrm{~A} .(0.75) \\ & \mathrm{U}_{\mathrm{MN}}=\mathrm{R}_{2} \mathrm{I}_{2} \text { thus } \mathrm{I}_{2}=0,2 \mathrm{~A} .(0.5) \\ & \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=0.6 \mathrm{~A} .(0.75) \end{aligned}$	2
2.1	$\frac{1}{\mathrm{R}}=\frac{0.6}{12}=0.05$	0.5
2.b	$\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}=\frac{1}{30}+\frac{1}{60}=\frac{1}{20}=0.05$	0.5
$2 . \mathrm{c}$	$\frac{1}{\mathrm{R}}=0.05$ and $\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}=0.05$, therefore $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}$	0.5
3.a	$\begin{aligned} & \mathrm{P}_{1}=\mathrm{U}_{\mathrm{CD} \cdot} \cdot \mathrm{I}_{1}=12 \times 0.4=4.8 \mathrm{~W} \quad(0.75) \\ & \mathrm{P}_{2}=\mathrm{U}_{\mathrm{MN} \cdot} \mathrm{I}_{2}=12 \times 0.2=2.4 \mathrm{~W}(0.5) \end{aligned}$	1.25
3.b.i	$\mathrm{P}_{\mathrm{e}}=\mathrm{U}_{\mathrm{AB}} . \mathrm{I}=12 \times 0.6=7.2 \mathrm{~W}$	0.5
3.b.ii	$\begin{aligned} & \mathrm{P}_{1}+\mathrm{P}_{2}=4.8+2.4=7.2 \mathrm{~W} \\ & \text { Thus } \mathrm{P}_{\mathrm{e}}=\mathrm{P}_{1}+\mathrm{P}_{2} \end{aligned}$	0.75

Third exercise (6 points)

Part of the Q	Answer	Mark
$\mathbf{N}^{0} \mathbf{Q}$	Answer	Marking Scheme
1.a	Weight of the solid. (0.5) Archimedes up thrust force.(0.5)	1
1.b	Weight of the solid: action from a distance. (0.5) Archimedes up thrust force: contact force.(0.5)	1
1.c	Weight : vertical line of action and downward direction; ($0.25,0.25$) Up thrust: vertical line of action and upward direction; ($0.25,0.25$)	1
1.d	(S) in equilibrium, then : $\overrightarrow{\boldsymbol{W}}+\overrightarrow{\boldsymbol{F}}=\overrightarrow{\boldsymbol{0}}$	0.5
1.e	(0.5 for each for force)	1
2.a	According to the graph, we notice that the immersed volume decreases when the density of the liquid increases	0.5
2.b	Because $\rho=\rho_{\text {s }}$	0.5
2.c	For $\rho=1 \mathrm{~g} / \mathrm{cm}^{3}$, we find $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{s}}=200 \mathrm{~cm}^{3}$.	0.5

