دورة المعام 2013 الاستثنائية السبت 24 آب 2013 امتحانات شهادة الثانوية العامة فرع علوم الحياة

		•
الاسم:	مسابقة في الرياضيات	عدد المسائل اربع
الرقم:	المدة ساعتان	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (4 points)

In the space referred to a direct orthonormal system ($O; \vec{i}, \vec{j}, \vec{k}$), consider the point A (6; 3; 2), the plane (P) with equation x - y + 2z - 7 = 0 and the line (d) with parametric equations:

 $\begin{cases} x = t \\ y = t - 3 & \text{where t is a real parameter.} \\ z = -1 \end{cases}$

1) Show that A is a point in (P) and that (d) is parallel to (P).

- 2) a- Verify that the point C (1; -2; -1) is on (d).
 - b- Determine a system of parametric equations of line (L) passing through C and perpendicular to (P).
 - c- Show that the point E (3; -4; 3) is the symmetric of C with respect to (P).
 - d- Deduce a system of parametric equations of line (Δ) symmetric of line (AC) with respect to (P).

II- (4 points)

An urn contains seven balls: four red balls and three green balls.

A player selects randomly and simultaneously three balls from this urn.

1) a- Calculate the probability that the player selects exactly two red balls.

b- Show that the probability that the player selects at least two red balls is equal to $\frac{22}{35}$.

2) After selecting three balls, the player scores:

- 9 points if he gets three red balls;
- 6 points if he gets exactly two red balls;
- 4 points if he gets exactly one red ball;
- zero if he gets three green balls.

Denote by X be the random variable that is equal to the score of the player.

- a- Determine the probability distribution of X.
- b- Knowing that the player scored more than 2 points, calculate the probability that his score is multiple of 3.

III- (4 points)

The complex plane is referred to a direct orthonormal system $(\mathbf{O}; \vec{u}, \vec{v})$.

- **A-** Consider the points A and B with respective affixes $z_A = 2 + 2i$ and $z_B = (1 + \sqrt{3})(-1 + i)$.
- 1) Determine the exponential form of the complex number $\frac{Z_B}{Z}$.
- 2) Prove that the triangle OAB is right at O.

B- To every point M with affix $z (z \neq 0)$, associate the point M' with affix z' such that $z' = 1 + i - \frac{2}{z}$.

- Let z = x + iy with x and y are two real numbers.
- 1) Express, in terms of x and y, the real part and the imaginary part of the complex number z'.
- Prove that if the real part of z' is zero, then M moves on a circle whose center and radius are to be determined.

IV- (8 points)

- **A-** Consider the function g defined over $]0; +\infty[$ as $g(x) = x^2 2\ln x$.
- 1) Determine $\lim_{x\to 0} g(x)$ and $\lim_{x\to +\infty} g(x)$.
- 2) Set up the table of variations of g and deduce that g(x) > 0.
- **B-** Let f be the function defined over $]0;+\infty[$ as $f(x) = \frac{x}{2} + \frac{1+\ln x}{x}$ and let (C) be its representative curve in an orthonormal system $(O;\vec{i},\vec{j})$.
- 1) Determine $\lim_{x\to 0} f(x)$ and deduce an asymptote to (C).
- 2) a- Determine lim f(x) and show that the line (Δ) with equation y = x/2 is an asymptote to (C).
 b- Study, according to the values of x, the relative positions of (C) and (Δ).
- 3) Show that $f'(x) = \frac{g(x)}{2x^2}$ and set up the table of variations of f.
- 4) Calculate the coordinates of the point B on (C) where the tangent (T) is parallel to (Δ) .
- 5) Show that the equation f(x) = 0 has a unique solution α , then verify that $0.34 < \alpha < 0.35$.
- 6) Plot (Δ) , (T) and (C).
- 7) Let h be the function defined over $]0; +\infty[$ as $h(x) = \frac{1+\ln x}{x}$.
 - a- Find an antiderivative H of h.
 - b- Deduce the measure of the area of the region bounded by (C), (Δ) and the lines with equations x = 1 and x = e.

Bareme LS En Session 2- 2013

Q1	Answers	
1	$x_A - y_A + 2z_A - 7 = 0$ then $A \in (P)$. and $t - t + 3 - 2 - 7 = -6 \neq 0$. Hence (d) is parallel to (P).	
2a	2a For: $x = x_c = 1$, $t = 1$, $y = y_c = -2$, and $z = z_c = -1$; hence $C \in (d)$.	
2b	2b $\overrightarrow{v_L}$ is parallel to $\overrightarrow{n_P}(1;-1;2)$ and (L) passes through C, hence a system of parametric equations of (L) is : $x = m + 1$, $y = -m - 2$, $z = 2m - 1$ where m is a real parameter.	
2c	(L) intersects (P) at point I (m +1, $-m -2$, $2m -1$), and I \in (P), hence m = 1 and I(2; -3 ;1). Moreover, I is the midpoint of [EC], hence :	
2d	The line (Δ) passes through A and E, hence $\overrightarrow{AM} = k\overrightarrow{AE}$, $x = -3k + 6$, $y = -7k + 3$, $z = k + 2$.	0.5

Q ₂	Answers		Μ
1a	P{2R,1G}= $\frac{C_4^2 \times C_3^1}{C_7^3} = \frac{18}{35}$.		1
1b	P{2R,1G}+P{3R}= $\frac{18}{35}+\frac{C_4^3}{C_7^3}=\frac{22}{35}$.		1
2a	$P(X=9) = P(3R) = \frac{C_4^3}{C_7^3} = \frac{4}{35}.$ $P(X=6) = P\{2R, 1G\} = \frac{1}{35}$	<u>8</u> .5	1
28	$P(X = 4) = P\{1R, 2G\} = \frac{C_4^1 \times C_3^2}{C_7^3} = \frac{12}{35}.$ $P(X = 0) = P(3G) = \frac{C_3^3}{C_7^3} = \frac{12}{35}.$	$\frac{1}{35}$.	1
2b	P(Score multiple of 3/ Score > 2) = $\frac{22}{35} \div \frac{34}{35} = \frac{11}{17}$.		1

Q ₃	Answers	М
A1	$\frac{z_{\rm B}}{z_{\rm A}} = \frac{\left(1+\sqrt{3}\right)\left(-1+i\right)}{2\left(1+i\right)} = \frac{1+\sqrt{3}}{2}i = \frac{1+\sqrt{3}}{2}e^{i\frac{\pi}{2}}.$	1
A2	$\overrightarrow{OA} \cdot \overrightarrow{OB} = -2(1+\sqrt{3}) + 2(1+\sqrt{3}) = 0.$ OR : $\frac{Z_B}{Z_A}$ is pure imaginary hence $(\overrightarrow{OA}, \overrightarrow{OB}) = \arg\left(\frac{1+\sqrt{3}}{2}i\right) = \frac{\pi}{2}$ then (OB) \perp (OA).	0.5
B1	$z' = 1 + i - \frac{2}{x + iy} = 1 + i - \frac{2x - 2iy}{x^2 + y^2}$. $\operatorname{Re}(z') = 1 - \frac{2x}{x^2 + y^2}$, $\operatorname{Im}(z') = 1 + \frac{2y}{x^2 + y^2}$.	1
B2	$\operatorname{Re}(z') = 1 - \frac{2x}{x^2 + y^2} = 0 \Longrightarrow x^2 + y^2 - 2x = 0 \Leftrightarrow (x - 1)^2 + y^2 = 0 \text{ hence M moves on the}$ circle with center (1 ; 0) and radius 1 deprived from O.	1.5

