$$
\begin{aligned}
& \text { ملاحظة:- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختز ان المعلومات أو رسم البيانات. } \\
& \text { - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترنيب المسائل الوارد في المسابقة) }
\end{aligned}
$$

I- (4 points)

In the space referred to a direct orthonormal system $(O ; \vec{i}, \vec{j}, \vec{k})$, consider the point $A(6 ; 3 ; 2)$, the plane (P) with equation $x-y+2 z-7=0$ and the line (d) with parametric equations:

$$
\left\{\begin{array}{l}
\mathrm{x}=\mathrm{t} \\
\mathrm{y}=\mathrm{t}-3 \\
\mathrm{z}=-1
\end{array}\right.
$$

1) Show that A is a point in (P) and that (d) is parallel to (P).
2) a- Verify that the point $\mathrm{C}(1 ;-2 ;-1)$ is on (d).
b- Determine a system of parametric equations of line (L) passing through C and perpendicular to (P).
c- Show that the point $\mathrm{E}(3 ;-4 ; 3)$ is the symmetric of C with respect to (P).
d- Deduce a system of parametric equations of line (Δ) symmetric of line (AC) with respect to (P).

II- (4 points)

An urn contains seven balls: four red balls and three green balls.
A player selects randomly and simultaneously three balls from this urn.

1) a- Calculate the probability that the player selects exactly two red balls.
b- Show that the probability that the player selects at least two red balls is equal to $\frac{22}{35}$.
2) After selecting three balls, the player scores:

- 9 points if he gets three red balls;
- 6 points if he gets exactly two red balls;
- 4 points if he gets exactly one red ball;
- zero if he gets three green balls.

Denote by X be the random variable that is equal to the score of the player.
a- Determine the probability distribution of X .
b- Knowing that the player scored more than 2 points, calculate the probability that his score is multiple of 3 .

III- (4 points)

The complex plane is referred to a direct orthonormal system $(O ; \vec{u}, \vec{v})$.
A- Consider the points A and B with respective affixes $z_{A}=2+2 i$ and $z_{B}=(1+\sqrt{3})(-1+i)$.

1) Determine the exponential form of the complex number $\frac{Z_{B}}{z_{A}}$.
2) Prove that the triangle $O A B$ is right at O.

B- To every point M with affix $z(z \neq 0)$, associate the point M^{\prime} with affix z^{\prime} such that $z^{\prime}=1+i-\frac{2}{z}$.
Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ with x and y are two real numbers.

1) Express, in terms of x and y, the real part and the imaginary part of the complex number z^{\prime}.
2) Prove that if the real part of z^{\prime} is zero, then M moves on a circle whose center and radius are to be determined.

IV- (8 points)

A- Consider the function g defined over $] 0 ;+\infty\left[\right.$ as $g(x)=x^{2}-2 \ln x$.

1) Determine $\lim _{x \rightarrow 0} g(x)$ and $\lim _{x \rightarrow+\infty} g(x)$.
2) Set up the table of variations of g and deduce that $g(x)>0$.

B- Let f be the function defined over $] 0 ;+\infty\left[\right.$ as $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{2}+\frac{1+\ln \mathrm{x}}{\mathrm{x}}$ and let (C) be its representative curve in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

1) Determine $\lim _{x \rightarrow 0} f(x)$ and deduce an asymptote to (C).
2) a- Determine $\lim _{x \rightarrow+\infty} f(x)$ and show that the line (Δ) with equation $y=\frac{x}{2}$ is an asymptote to (C).
b- Study, according to the values of x, the relative positions of (C) and (Δ).
3) Show that $f^{\prime}(x)=\frac{g(x)}{2 x^{2}}$ and set up the table of variations of f.
4) Calculate the coordinates of the point B on (C) where the tangent (T) is parallel to (Δ).
5) Show that the equation $f(x)=0$ has a unique solution α, then verify that $0.34<\alpha<0.35$.
6) Plot (Δ), (T) and (C).
7) Let h be the function defined over $] 0 ;+\infty\left[\right.$ as $h(x)=\frac{1+\ln \mathrm{x}}{\mathrm{x}}$. a- Find an antiderivative H of h .
b- Deduce the measure of the area of the region bounded by $(\mathrm{C}),(\Delta)$ and the lines with equations $\mathrm{x}=1$ and $\mathrm{x}=\mathrm{e}$.

Bareme LS En Session 2-2013

Q1	Answers	M
1	$x_{A}-y_{A}+2 z_{A}-7=0$ then $A \in(P)$. and $t-t+3-2-7=-6 \neq 0$. Hence (d) is parallel to (P).	1
2a	For: $\mathrm{x}=\mathrm{x}_{\mathrm{C}}=1, \mathrm{t}=1, \mathrm{y}=\mathrm{y}_{\mathrm{C}}=-2$, and $\mathrm{z}=\mathrm{z}_{\mathrm{C}}=-1$; hence $\mathrm{C} \in(\mathrm{d})$.	0.5
2b	$\overrightarrow{\mathrm{v}_{\mathrm{L}}}$ is parallel to $\overrightarrow{\mathrm{n}_{\mathrm{P}}}(1 ;-1 ; 2)$ and (L) passes through C , hence a system of parametric equations of (L) is : $\mathrm{x}=\mathrm{m}+1, \mathrm{y}=-\mathrm{m}-2, \mathrm{z}=2 \mathrm{~m}-1$ where m is a real parameter.	0.5
2c	(L) intersects (P) at point $\mathrm{I}(\mathrm{m}+1,-\mathrm{m}-2,2 \mathrm{~m}-1)$, and $\mathrm{I} \in(\mathrm{P})$, hence $\mathrm{m}=1$ and $\mathrm{I}(2 ;-3 ; 1)$. Moreover, I is the midpoint of [EC], hence : $\mathrm{x}_{\mathrm{E}}=2 \mathrm{x}_{\mathrm{I}}-\mathrm{x}_{\mathrm{C}}=3, \mathrm{y}_{\mathrm{E}}=2 \mathrm{y}_{\mathrm{I}}-\mathrm{y}_{\mathrm{C}}=-4 \text { and } \mathrm{z}_{\mathrm{E}}=2 \mathrm{z}_{\mathrm{I}}-\mathrm{z}_{\mathrm{C}}=3 .$ OR: $\overrightarrow{\mathrm{CE}}(2 ;-2 ; 4), \overrightarrow{\mathrm{CE}}=2 \overrightarrow{\mathrm{n}_{\mathrm{P}}},(\mathrm{CE})$ is perpendicular to (P) and the point $\mathrm{I}(2 ;-3 ; 1)$ midpoint of [CE], is in (P), hence C and E are symmetric with respect to (P).	1.5
2d	The line (Δ) passes through A and E, hence $\overrightarrow{\mathrm{AM}}=\mathrm{k} \overrightarrow{\mathrm{AE}}, \mathrm{x}=-3 \mathrm{k}+6, \mathrm{y}=-7 \mathrm{k}+3, \mathrm{z}=\mathrm{k}+2$.	0.5

Q_{2}	Answers	M	
1 a	$\mathrm{P}\{2 \mathrm{R}, 1 \mathrm{G}\}=\frac{\mathrm{C}_{4}^{2} \times \mathrm{C}_{3}^{1}}{\mathrm{C}_{7}^{3}}=\frac{18}{35}$.	1	
1 b	$\mathrm{P}\{2 \mathrm{R}, 1 \mathrm{G}\}+\mathrm{P}\{3 \mathrm{R}\}=\frac{18}{35}+\frac{\mathrm{C}_{4}^{3}}{\mathrm{C}_{7}^{3}}=\frac{22}{35}$.	$\mathrm{P}(\mathrm{X}=6)=\mathrm{P}\{2 \mathrm{R}, 1 \mathrm{G})\}=\frac{18}{35}$.	1
	$\mathrm{P}(\mathrm{X}=9)=\mathrm{P}(3 \mathrm{R})=\frac{\mathrm{C}_{4}^{3}}{\mathrm{C}_{7}^{3}}=\frac{4}{35}$.	$\mathrm{P}(\mathrm{X}=0)=\mathrm{P}(3 \mathrm{G})=\frac{\mathrm{C}_{3}^{3}}{\mathrm{C}_{7}^{3}}=\frac{1}{35}$.	1
2 a	$\mathrm{P}(\mathrm{X}=4)=\mathrm{P}\{1 \mathrm{R}, 2 \mathrm{G}\}=\frac{\mathrm{C}_{4}^{1} \times \mathrm{C}_{3}^{2}}{\mathrm{C}_{7}^{3}}=\frac{12}{35}$.		
2 b	$\mathrm{P}($ Score multiple of $3 /$ Score $>2)=\frac{22}{35} \div \frac{34}{35}=\frac{11}{17}$.		

Q_{3}	Answers	M
A1	$\frac{\mathrm{z}_{\mathrm{B}}}{\mathrm{z}_{\mathrm{A}}}=\frac{(1+\sqrt{3})(-1+\mathrm{i})}{2(1+\mathrm{i})}=\frac{1+\sqrt{3}}{2} \mathrm{i}=\frac{1+\sqrt{3}}{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}} .$	1
A2	$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-2(1+\sqrt{3})+2(1+\sqrt{3})=0 .$ OR : $\frac{\mathrm{Z}_{\mathrm{B}}}{\mathrm{Z}_{\mathrm{A}}}$ is pure imaginary hence $(\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}})=\arg \left(\frac{1+\sqrt{3}}{2} \mathrm{i}\right)=\frac{\pi}{2}$ then $(\mathrm{OB}) \perp(\mathrm{OA})$.	0.5
B1	$z^{\prime}=1+i-\frac{2}{x+i y}=1+i-\frac{2 x-2 i y}{x^{2}+y^{2}} . \operatorname{Re}\left(z^{\prime}\right)=1-\frac{2 x}{x^{2}+y^{2}}, \operatorname{Im}\left(z^{\prime}\right)=1+\frac{2 y}{x^{2}+y^{2}} .$	1
B2	$\operatorname{Re}\left(z^{\prime}\right)=1-\frac{2 x}{x^{2}+y^{2}}=0 \Rightarrow x^{2}+y^{2}-2 x=0 \Leftrightarrow(x-1)^{2}+y^{2}=0$ hence M moves on the circle with center $(1 ; 0)$ and radius 1 deprived from O .	1.5

