امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة

الاسم: الرقم: مسابقة في مادة الفيزياء المدة ساعتان

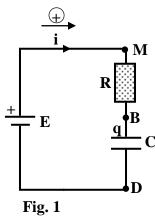
This exam is formed of three exercises in three pages. The use of non-programmable calculator is recommended.

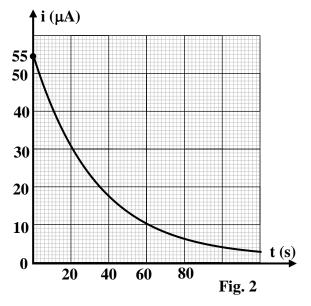
<u>First exercise</u>: (7 points)

The flash of a camera

The electronic flash of a camera is made primarily of a capacitor of capacitance C, a flash lamp and of an electronic circuit which transforms the constant voltage E = 3 V provided by two dry cells into a constant voltage $U_0 = 300$ V. The aim of this exercise is to show the importance of the electronic circuit in the electronic flash of a camera.

A – **Determination of the value of the capacitance C of the capacitor** To determine the value of the capacitance C of the capacitor, we connect the circuit of figure 1 where the resistor has a large resistance R, the DC generator maintains across its terminals a constant voltage E = 3 V. An appropriate device allows to plot the curve representing the variations of the current i as a function of time. The capacitor, being uncharged, at the instant $t_0 = 0$, we close the circuit. We obtain the graph of figure 2.


- 1) a) Determine the expression of the current i in terms of C and the voltage $u_C = u_{BD}$ across the terminals of the capacitor.
 - **b**) By applying the law of addition of voltages, determine the differential equation of the voltage u_c .
- 2) The solution of this differential equation is given by:


 $u_{\rm C} = E(1 - e^{-\tau})$ where $\tau = RC$.

- a) Determine, as a function of time t, the expression of the current i.
- **b**) Deduce, at the instant $t_0 = 0$, the expression of the current I_0 in terms of E and R.
- c) Using figure 2:
 - i) calculate the value of the resistance R of the resistor;
 - ii) determine the value of the time-constant τ of the circuit.
- **d**) Deduce that $C \approx 641 \ \mu F$.

B – Energetic Study

- 1) Show that the electric energy stored in the capacitor, when it is completely charged under the voltage E is $W \approx 2.9 \times 10^{-3}$ J.
- 2) The capacitor, being totally charged, is disconnected from the circuit and discharges through a resistor of same resistance R. Calculate:
 - \mathbf{a}) the duration at the end of which the capacitor can be practically completely discharged ;
 - **b**) the average power given by the capacitor during the discharging process.

C – The flash of the camera

The discharge in the flash lamp causes a flash of duration approximately one millisecond .

1) Determine the value of the average electric power P_e consumed by this flash if the capacitor is charged under the voltage:

a)
$$E = 3 V$$
;

- **b**) $U_0 = 300 V.$
- 2) Explain why it is necessary to raise the voltage before applying it across the terminals of the capacitor.

Second exercise: (7 points)

Measurement of the gravitational acceleration

In order to measure the gravitational acceleration, we consider a spring of stiffness k and of negligible mass, connected from its upper end to a fixed support while its other end carries a solid (S) of mass m. At equilibrium the center of mass G of (S) coincides with a point O and the spring elongates by $\Delta \ell_o = x_o$ (adjacent figure). We denote by g the gravitational acceleration. The spring is stretched by pulling (S) vertically downwards from its equilibrium position, then releasing it without initial velocity at instant $t_o = 0$. G oscillates around its equilibrium position O. At an instant t, G is defined by its abscissa $x = \overline{OG}$ and the algebraic value of its velocity is

$$v = \frac{dx}{dt}$$

The horizontal plane passing through O is taken as a reference of gravitational potential energy.

A – Static study

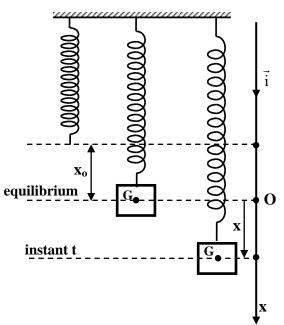
- 1) Name the external forces acting on (S) at the equilibrium position.
- 2) Determine a relation among m, g, k and x_o.

B – Energetic study

- 1) Write, at an instant t, the expression of the :
 - **a**) kinetic energy of (S) in terms of m and v;
 - **b**) elastic potential energy of the spring in terms of k , x and x_0 ;
 - c) gravitational potential energy of the system [(S), Earth] in terms of m, g and x.
- 2) Show that the expression of the mechanical energy of the system [(S), spring, Earth] is given by:

$$ME = \frac{1}{2}mv^{2} + \frac{1}{2}k(x + x_{o})^{2} - mgx.$$

3) a) Applying the principle of the conservation of the mechanical energy, show that the


differential equation in x that describes the motion of G has the form of : $x'' + \frac{k}{k}x = 0$.

b) Deduce the expression of the proper period T_o of the oscillator in terms of m and k.

c) Show that the expression of T_o is given by:
$$T_o = 2\pi \sqrt{\frac{x_0}{g}}$$
.

C – **Experimental study**

For different solids of different masses suspended to the same spring, we measure using a stop watch the corresponding values of T_0 . The results are collected in the following table:

m (g)	20	40	60	80	100
$x_{o}(cm)$	4	8	12	16	20
$T_{o}(s)$	0.4	0.567	0.693	0.8	0.894
T_{o}^{2} (s ²)	0.16		0.48	0.64	

- 1) Complete the table.
- 2) Plot the curve giving the variations of x_0 as a function of T_0^2 .

Scale : on the abscissa-axis: 1cm represents 0.16 s^2 on the ordinate –axis: 1cm represents 4 cm.

on the ordinate –axis. Tem represents 4 cm.

3) Determine the slope of this curve and, using the expression $T_o = 2\pi \sqrt{\frac{x_0}{g}}$, deduce the value of the

gravitational acceleration.

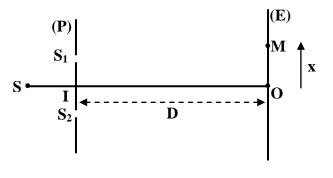
Third exercise: (6 points)

Interference of light

Consider Young's double slit apparatus that is represented in the adjacent figure. S_1 and S_2 are separated by a distance a = 1 mm.

The planes (P) and (E) are at a distance D = 2 m. I is the midpoint of $[S_1S_2]$ and O is the orthogonal projection of I on (E). On the perpendicular to IO at point O and parallel to S_1S_2 , a point M is defined by its abscissa OM = x.

The optical path difference δ at M ($\overline{OM} = x$), located in the


interference region on the screen of observation is: $\delta = SS_2M - SS_1M = \frac{ax}{D}$.

- A The source S emits a monochromatic light of wavelength λ in air.
- 1) The phenomenon of interference of light shows evidence of an aspect of light. Name this aspect.
- 2) Indicate the conditions for obtaining the phenomenon of interference of light.
- 3) Describe the interference fringes that observed on (E).
- 4) Determine the expression giving the abscissa of the centers of the bright fringes and that of the centers of the dark fringes.
- 5) Deduce the expression of the interfringe distance in terms of λ , D and a.
- **B** The source S emits white light which contains all the visible radiations of wavelengths λ in vacuum or in air where: 400 nm (violet) $\leq \lambda \leq 800$ nm (red).
- 1) The obtained central fringe is white. Justify.
- 2) Compare the positions of the centers of the first bright fringes corresponding to red and violet colors on the same side of O.
- **3)** The point M has an abscissa x = 4 mm.
 - a) Show that the wavelengths of the radiations that reach M in phase are given by: λ (in nm) = $\frac{2000}{k}$,

k being a non- zero positive integer.

- **b**) Determine the wavelengths of these radiations.
- **C** The source **S** emits two radiations of wavelengths $\lambda_1 = 450$ nm and $\lambda_2 = 750$ nm.

Determine the abscissa x of the nearest point to O, where two dark fringes coincide.

الدورة الإستثنانية للعام ٢٠١٥	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية
		دائرة الامتحانات
الاسم: الرقم:	المدخبين اعتان	مشروع معيار التصحيح

First exercise (7 points)

Part of the Q	Answer	Mark
A.1.a	The expression of i: $i = \frac{dq}{dt} = C \frac{du_C}{dt}$	0.5
A.1.b	$u_{MD} = u_{MB} + u_{BD} \Longrightarrow E = Ri + u_C \Longrightarrow E = RC \frac{du_C}{dt} + u_C$	
A.2.a	$i = C \frac{du_C}{dt} = C \frac{E}{RC} e^{-\frac{t}{\tau}}, \Rightarrow i = \frac{E}{R} e^{-\frac{t}{\tau}}.$	0.5
A.2.b	At the instant $t_0 = 0$, $I_0 = \frac{E}{R}$.	0.25
A.2.c.i	At the instant $t_0 = 0$, $I_0 = 55 \ \mu A \Rightarrow R = 54545.45 \ \Omega$.	0.5
A.2.c.ii	For $i=0.37~I_0=20.35\approx 20~\mu\text{A}$, $t=\tau=35~s.$	0.75
A.2.d	$\tau = \text{RC} \Longrightarrow \text{C} = 641 \ \mu\text{F}.$	0.5
B.1	Electric energy W = $\frac{1}{2}$ CE ² = $\frac{1}{2} \times 641 \times 10^{-6} \times 9 = 2,9 \times 10^{-3}$ J	0.5
B.2.a	The duration: $\Delta \tau = 5\tau = 175$ s.	0.5
B.2.b	The average power of the discharge : $\frac{W}{\Delta t} = \frac{2.9 \times 10^{-3}}{175} = 1.65 \times 10^{-5} \text{ W}$	0.75
C.1.a	$W_1 = \frac{1}{2} CE^2 = 2.9 \times 10^{-3} J \Longrightarrow P_1 = \frac{W_1}{t} = 2.9 W.$	0.5
C.1.b	$W_2 = \frac{1}{2} C U_0^2 = 28.845 J \Longrightarrow P_2 = \frac{W_2}{t} = 28845 W$	0.75
C.3	To increase the power consumed by the flash lamp during discharge.	0.5

Second exercise (7 points)

Part of the Q	Answer	Mark
A.1	The weight \vec{mg} and the force of tension \vec{T} in the spring	0.5
A.2	At equilibrium, $\vec{T} = -m\vec{g} \Rightarrow T = mg \Rightarrow mg = k x_0$.	
B.1.a	$\mathbf{K}\mathbf{E} = \frac{1}{2} \mathbf{m} \mathbf{V}^2$	0.25
B.1.b	$PE_{el} = \frac{1}{2} k(x + x_0)^2$	0.25
B.1.c	$PE_g = -mgx$	0.25
B.2	$\begin{split} \mathbf{M}\mathbf{E} &= \mathbf{K}\mathbf{E} + \mathbf{P}\mathbf{E}_{el} + \mathbf{P}\mathbf{E}_{g} \\ \mathbf{M}\mathbf{E} &= \frac{1}{2}\mathbf{m}\mathbf{V}^{2} + \frac{1}{2}\mathbf{k}(\mathbf{x} + \mathbf{x}_{o})^{2} - \mathbf{m}g\mathbf{x} \;. \end{split}$	0.25
B.3.a	ME is conserved $\Rightarrow \frac{dME}{dt} = 0 \Rightarrow \frac{1}{2} \text{ m}2\text{vx''} + \frac{1}{2} \text{ k}2(\text{x} + \text{x}_0) \text{ v} - \text{mgv} = 0$ $\Rightarrow \text{ V} (\text{mx''} + \text{kx}_0 - \text{mg} + \text{kx}) = 0$ But $\text{V} \neq 0$ and $\text{mg} = \text{kx}_0$ therefore $\text{x''} + \frac{k}{m} \text{ x} = 0$.	1
B.3.b	This differential equation is of the form $x'' + \omega_0^2 x = 0$ therefore : $\omega_0 = \sqrt{\frac{k}{m}}$ and $T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$	1
B.3.c	$mg = kx_o \Rightarrow \frac{m}{k} = \frac{x_o}{g} \Rightarrow T_o = 2\pi \sqrt{\frac{x_o}{g}}$	
C.1	The missed values are :0.321; 0.799.	0.5
C.2	See figure $20^{-1} x_0(cm)$ $16^{-1} x_0(cm)$ $12^{-1} x_0(cm)$	0.5
C.3	The curve is a straight line passing through the origin. The slope is : $a = \frac{x_0}{T_0^2} = 0.25 \text{ m/s}^2$. On the other hand : $T_0^2 = 4 \pi^2 \frac{x_0}{g}$ and $g = 4 \pi^2 \frac{x_0}{T_0^2}$ $\Rightarrow g = 9.86 \text{ m/s}^2$.	1.25

Third exercise (6 points)

Part of the Q	Answer	Mark	
A.1	The wave aspect of light	0.5	
A.2	The two sources S_1 and S_2 are monochromatic and coherent		
A.3	We observe interference fringes : - alternate bright and dark fringes ; - rectilinear and equidistant - parallel of S ₁ and S ₂		
A.4	Bright fringe: $\delta = k\lambda = \frac{ax}{D} \implies x = \frac{k\lambda D}{a}$. Dark fringe: $\delta = (2k+1) = \frac{ax}{D} \implies x = \frac{(2k+1)\lambda D}{2a}$	1	
A.5	Dark fringe: $\delta = (2k+1) = \frac{ax}{D} \implies x = \frac{(2k+1)\lambda D}{2a}$ $i = x_{k+1} - x_K = (k+1)\frac{\lambda D}{a} - \frac{k\lambda D}{a} = \frac{\lambda D}{a}$	0.5	
B.1	each radiation of the white light gives out at O a bright fringe; the superposition of all radiation at O gives the white color	0.5	
B.2	$x_v = k \frac{\lambda_v D}{a}$ et $x_R = k \frac{\lambda_R D}{a} \implies \lambda_R > \lambda_v \Rightarrow x_R > x_v$	0.5	
B.3.a	$\frac{a}{x} = \frac{k\lambda D}{a} \Rightarrow 4 \times 10^{6} (\text{in nm}) = \frac{k\lambda \times 2 \times 10^{9}}{1 \times 10^{6}} \Rightarrow \lambda (\text{in nm}) = \frac{2000}{k}$	0.5	
B.3.b	$400 \le \lambda = \frac{2000}{k} \le 800 \implies$ $2.5 \le k \le 5 \Longrightarrow k = 3, 4 \text{ and } 5$ $\Rightarrow \lambda_1 = \frac{2000}{3} = 667 \text{ nm}; \ \lambda_2 = \frac{2000}{4} = 500 \text{ nm}; \ \lambda_3_2 = \frac{2000}{5} = 400 \text{ nm}.$ The abscissa of points on the screen where the radiations arrive in	0.75	
С	The abscissa of points on the screen where the radiations arrive in opposition of phase is: $x = \frac{(2k+1)\lambda D}{2a} \Rightarrow$ $\frac{(2k_1+1)\lambda_1 D}{2a} = \frac{(2k_2+1)\lambda_2 D}{2a} \Rightarrow$ $\frac{(2k_1+1)\lambda_1 D}{2a} = \frac{(2k_2+1)\lambda_2 D}{2a} \Rightarrow \frac{(2k_1+1)}{(2k_1+1)} = \frac{\lambda_2}{\lambda_1} = \frac{5}{3};$ $\lambda_1 < \lambda_2 \Rightarrow k_1 > k_2;$ $900k_1 + 450 = 1500 \ k_2 + 750 \Rightarrow 3k_1 - 5k_2 = 1.$ This equation is verified for $k_1 = 2$ and $k_2 = 1$ (first solution) $x (\text{in mm}) = \frac{(4+1)450 \times 10^{-6} \times 2 \times 10^3}{2 \times 1} = 2.25 \text{ mm}.$	0.75	