	* T * 4
ي مادة الرياضيات الاسم:	عدد المسائل: ست مسابقة في
ي مده الرياسية	
' se	a
اربع ساعات الرقم:	51411
از کے تعالی اور تعن	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات.

- يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Écrire le numéro de chaque question et donner en justifiant la réponse qui lui correspond.

	0 1	Réponses			
№	Questions	a	b	С	d
1	La solution particulière $f(x)$ de l'équation différentielle $y'' + 4y = 0$ telle que $f(0) = 0$ et $f'(\pi) = -1$ est :	$\frac{1}{2}\sin 2x$	$-\frac{1}{2}\sin 2x$	$-\frac{1}{2}\cos 2x$	sin 2x – cos2x
2	Pour x >1, $\lim_{x \to 1} \frac{\int_{1}^{x} e^{t^2} dt}{x-1} =$	+∞	1	e	2e
3	Si f est une fonction impaire, continue sur \Box et telle que : $\int_{-1}^{3} f(x) dx = 2, \text{ alors } \int_{-3}^{-1} f(x) dx =$	-2	0	2	- 4
4	Soit M d'affixe z $(z \ne 1)$ un point variable du plan complexe rapporté à un repère orthonormé direct. Si $\frac{z+1}{z-1}$ est un réel alors M se déplace sur :	le cercle de centre O et de rayon 1 privé du point d'affixe 1	l'axe des abscisses privé du point d'affixe 1	la droite d'équation y = x	l'axe des ordonnées

II- (2 points)

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les points E(-1; 1; 0),

F(-2; -1; 0) et la droite (d) d'équations paramétriques x = t - 1, y = 2t + 1, z = -2t où t est un paramètre réel. (P) est le plan déterminé par le point F et la droite (d).

- 1) Vérifier que E est un point de (d).
- 2) Montrer que 2x y + 3 = 0 est une équation de (P).
- 3) (C) est le cercle du plan (P) de centre F et de rayon FE.
 - a- Trouver les coordonnées du point H, projeté orthogonal de F sur (d).
 - b-Trouver les coordonnées de L, le second point d'intersection de (d) et (C).
 - c- Ecrire un système d'équations paramétriques de la bissectrice de l'angle EFL.
- 4) Soit (Q) le plan contenant (d) et perpendiculaire à (P). Soit (Δ) la médiatrice du segment [EL] contenue dans (Q).

Ecrire un système d'équations paramétriques de la droite (Δ).

III- (3 points)

Une urne contient 5 boules blanches et 2 boules noires.

Un jeu consiste à effectuer, au hasard, deux tirages successifs.

- Au premier tirage, on tire une boule. Si elle est blanche, on la remet dans l'urne sinon on la laisse en dehors de l'urne.
- Au second tirage, on tire simultanément deux boules de l'urne.

On considère les événements suivants :

- B : « la boule tirée au premier tirage est blanche » ;
- E : « les deux boules tirées au second tirage sont blanches » ;
- F: « les deux boules tirées au second tirage sont noires » ;
- G : « les deux boules tirées au second tirage sont de couleurs différentes ».
- 1) Calculer les probabilités $P\left(\frac{E}{B}\right)$ et $P\left(\frac{E}{B}\right)$. Déduire que $P(E) = \frac{26}{49}$.
- 2) Calculer P(F) et P(G).
- 3) Sachant que les deux boules tirées au second tirage ont la même couleur, calculer la probabilité que la boule tirée au premier tirage soit noire.
- 4) Dans cette question, on marque −3 points pour chaque boule noire tirée et +5 points pour chaque boule blanche tirée.

On note ${\bf S}$ la somme des points marqués pour les deux boules obtenues au second tirage.

Calculer la probabilité que ${\bf S}$ soit positive.

IV- (3 points)

Le plan est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j})$.

(C) est le cercle de centre I(0; 3) et de rayon 2, (d) est la droite d'équation y = -3,

 $L(\alpha;\beta)$ est un point variable sur (C), N est le projeté orthogonal de L sur (d) et M est le milieu du segment [LN].

- 1) Ecrire une équation de (C).
- 2) a- Déterminer les coordonnées de M en fonction de α et β .
 - b- Lorsque L se déplace sur (C), démontrer que M se déplace sur l'ellipse (E) d'équation $\frac{x^2}{4} + y^2 = 1$. c- Tracer (E).
- 3) (P) est la parabole de sommet S (0; 1) et de foyer $F\left(0; \frac{3}{4}\right)$.
 - a- Montrer que $y = 1 x^2$ est une équation de (P).
 - b- Tracer (P) dans le même repère que (E).
- 4) a- Calculer $\int_{0}^{1} (1-x^2) dx$.

b- Déduire l'aire du domaine situé au-dessus de l'axe des abscisses et limité par (E) et (P).

5) Soit G (-1; 0) un point de (P) et (Δ) la tangente en G à (P). H est le point de (P) où la tangente à (P) est perpendiculaire à (Δ). Démontrer que G, H et F sont alignés.

V- (3 points)

ODA est un triangle équilatéral direct de côté 1.

R est la rotation de centre O et d'angle $\frac{\pi}{2}$.

Soit B = R(A), D' = R(D) et C le point tel que D = R(C).

- 1) a- Faire une figure.
 - b-Montrer que O est le milieu de [C D'] et que BC = $\sqrt{3}$.
- 2) a- Justifier que (AC) et (BD) sont perpendiculaires et que AC = BD. b- Prouver que (AD) est parallèle à (BC).
- 3) Soit E le point d'intersection des droites (AC) et (BD) ; on définit l'homothétie h de centre E qui transforme A en C.
 - a- Déterminer h (D).
 - b- Calculer le rapport de h.
- 4) Soit L le milieu de [AD] et F = h (L). Montrer que les points O, E, F et L sont alignés.
- 5) R'est la rotation de centre E et d'angle $-\frac{\pi}{2}$. Soit $S = h \circ R'$.
 - a- Déterminer la nature de S et donner ses éléments caractéristiques.
 - b- Montrer que S(A) = B.

VI- (7 points)

A- Soit h la fonction définie sur \Box par : h(x) = e^x - x - 1.

On désigne par (C) sa courbe représentative dans un repère orthonormé.

1) a-Déterminer $\lim_{x\to +\infty} h(x)$.

b-Déterminer $\lim_{x\to -\infty} h(x)$ et montrer que la droite (d) d'équation y=-x-1 est une asymptote à (C).

- 2) a- Calculer h'(x) et dresser le tableau de variations de h.
 - b- Tracer (d) et (C).
 - c-Déduire que : $e^x \ge x + 1$ pour tout réel x.
- **B-** Soit f la fonction définie par : $f(x) = \frac{e^x}{e^x x}$.

On désigne par (C') sa courbe représentative dans un autre repère orthonormé.

- 1) Montrer que f est définie sur \square .
- 2) Déterminer les asymptotes a(C').
- 3) Vérifier que $f'(x) = \frac{(1-x)e^x}{(e^x x)^2}$ et dresser le tableau de variations de f.
- 4) a- Ecrire une équation de la tangente (T) à (C') en son point E d'abscisse 0.
 - b- Vérifier que $f(x)-x-1=\frac{x(x+1-e^x)}{e^x-x}$.
 - c- Etudier, suivant les valeurs de x, la position de (C') par rapport à (T).
 - d- Tracer (T) et (C').
- C- On définit, pour tout entier naturel n, la suite (u_n) par: $u_n = \int_0^n f(x) dx$.
 - 1) Montrer que la suite (u_n) est croissante.
 - 2) a- Vérifier que, pour tout $x \ge 0$, on a : $f(x) \ge 1$
 - b- La suite (u_n) est-elle convergente? Justifier.

Barème Math SG – Deuxième Session - 2015

QI	Réponses	N
1	$y = A\cos 2x + B\sin 2x. \ f(0) = 0 \ donc \ A = 0. \ f'(x) = -2A\sin 2x + 2B\cos 2x. \ f'(\pi) = -1 \ donc$ $B = -\frac{1}{2}.$ b)	1
2	$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{\int_{x=1}^{x} e^{t^{2}} dt}{x-1} = \frac{0}{0} \text{ (Indéterminée). R.H. } \lim_{\substack{x \to 1 \\ x \to 1}} \frac{\int_{x=1}^{x} e^{t^{2}} dt}{x-1} = \lim_{\substack{x \to 1 \\ x \to 1}} \frac{e^{x^{2}}}{1} = e.$	1
3	$\int_{-3}^{3} f(x) dx = \int_{-3}^{-1} f(x) dx + \int_{-1}^{3} f(x) dx = 0 \Rightarrow \int_{-3}^{-1} f(x) dx = -2.$ a)	1
4		1

QII	Réponses	N
1	Pour $t = 0$ E est un point de (d).	0,5
2	$2(t-1) - (2t+1) + 3 = 0 - 4 + 1 + 3 = 0$; $2x_F - y_F + 3 = -4 + 1 + 3 = 0$ donc $F \in (P)$ alors l'équation donnée est celle de (P) .	0,5
3a		1
3b	H milieu de [EL] donc $L\left(-\frac{19}{9}; -\frac{11}{9}; \frac{20}{9}\right)$.	0,5
3c	(FH) est la bissectrice de EFL. $\overrightarrow{FM} = m\overrightarrow{FH} \Leftrightarrow x = \frac{4}{9}m - 2$, $y = \frac{8}{9}m - 1$, $z = \frac{10}{9}m$.	0,5
4	Un vecteur directeur de la médiatrice est $\overrightarrow{n_p}(2;-1;0)$ et la médiatrice passe par le point H; d'où un système des équations paramétriques de la médiatrice est : $x = 2\lambda - \frac{14}{9}$; $y = -\lambda - \frac{1}{9}$; $z = \frac{10}{9}$ où λ est un paramètre réel.	1

QIII	Réponses	N
1	$P(E/B) = \frac{C_5^2}{C_7^2} = \frac{10}{21} ; P(E/B) = \frac{C_5^2}{C_6^2} = \frac{10}{15} = \frac{2}{3} ; P(E) = P(B \cap E) + P(B \cap E) = \frac{5}{7} \times \frac{10}{21} + \frac{2}{7} \times \frac{10}{15} = \frac{26}{49}$	2.5
2	$P(F) = P(F \cap B) + P(F \cap \overline{B}) = \frac{5}{7} \times \frac{1}{21} + 0 = \frac{5}{147} ; P(G) = 1 - (P(E) + P(F)) = \frac{64}{147}$	1.5
3	$P(\overline{B}/\overline{G}) = \frac{P(\overline{B} \cap \overline{G})}{P(\overline{G})} = \frac{P(\overline{B}).P(\overline{G}/\overline{B})}{1 - P(G)} = \frac{\frac{2}{7} \cdot \frac{C_5^2}{C_6^2}}{1 - \frac{64}{147}} = \frac{28}{83}$	1
4	$P(S>0) = 1 - P(S<0) = 1 - \frac{5}{147} = \frac{142}{147}$	1

QIV	Réponses	N
1	$x^2 + (y-3)^2 = 4.$	0,5
2a	$L(\alpha;\beta), N(\alpha;-3) \Rightarrow M\left(\alpha;\frac{\beta-3}{2}\right).$	0,5
2b	$\frac{\alpha^2}{4} + \left(\frac{\beta - 3}{2}\right)^2 = \frac{\alpha^2 + (\beta - 3)^2}{4} = \frac{4}{4} = 1$ puisque L est sur (C). Donc M se déplace sur (E).	1
2c		0,5
3a	$\frac{p}{2} = SF = \frac{1}{4} \text{ donc } 2p = 1.\text{ y'y est l'axe focal , donc } x^2 = -(y-1) \Leftrightarrow y = 1-x^2.$ $\mathbf{OU}: \text{ La directrice est la droite (D) d'équation } y = \frac{5}{4}.$ $\text{Dist(R,(D))} = \text{RF avec R(x; y)} \in (P) \text{ alors } \left y - \frac{5}{4} \right ^2 = x^2 + \left(y - \frac{3}{4} \right)^2 \Leftrightarrow y = 1 - x^2.$	0,5
3b	Voir la figure en 2c.	0,5
4a	$\int_{0}^{1} (1 - x^{2}) dx = \frac{2}{3}.$	0,5
4b	Aire = $\frac{\pi ab}{2} - 2 \int_{0}^{1} (1 - x^{2}) dx = \pi - \frac{4}{3}$.	1
5	$y = f(x) = 1 - x^{2} \text{donc } f'(-1) = 2, \ f'(x_{H}) = -\frac{1}{2} \Rightarrow -2x = -\frac{1}{2} \Rightarrow x = \frac{1}{4} \text{ donc } H\left(\frac{1}{4}; \frac{15}{16}\right).$ $\overrightarrow{GH} = \frac{5}{4} \overrightarrow{GF} \text{ donc } G, \text{ H et F sont alignés.}$	1

QV	Réponses	N
1a	E L	0,5
1b	$\hat{COD} = \hat{DOD}' = 90^{\circ} \text{donc C, O, D' sont alignés et OC} = \hat{OD} = \hat{OD', d'où O} \text{est le milieu}$ $\hat{DOD}' = \hat{OOD}' \text{donc le triangle CBD' est rectangle en B.}$ $\hat{DOD}' = \hat{OOD}' \text{donc le triangle CBD'} = \sqrt{2^{2} - 1} = \sqrt{3}.$	1
2a	$R(C) = D$ et $R(A) = B \Rightarrow (AC)$ est perpendiculaire à (BD) et $AC = BD$.	0,5
2b	R(D) = D´, R(A) =B donc AD perpendiculaire à BD´ et (BC) est perpendiculaire à (BD´), d'où (AD) et (BC) sont parallèles.	1
3a	h(A) = C et (AD) est parallèle à (BC) , donc $h(D) = B$.	0,5
3b	$\overrightarrow{BC} = \overrightarrow{KDA}$ donc $K = -\sqrt{3}$.	0,5
4	F milieu de [BC] ; E, F et L sont alignés. (OF) et (OL) sont perpendiculaires à (BC) \Rightarrow O, F et L sont alignés.	1
5a	S est la similitude S (E, $\sqrt{3}$, $\frac{\pi}{2}$).	0,5
5b	S(A) = hoR'(A) = h(R'(A)) = h(D) = B car EAD est un triangle rectangle isocèle.	0,5

QVI	Réponses			
	1a	$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 - \frac{1}{x} \right) = +\infty (+\infty) = +\infty.$	0,5	
A	$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} (e^x - x - 1) = +\infty \text{ et } \lim_{x \to -\infty} [h(x) - y] = \lim_{x \to -\infty} e^x = 0,$ (d) est une asymptote (C).			
	2a	$h'(x) = e^{x} - 1.$ $\begin{array}{c cccc} x & -00 & 0 & +00 \\ \hline h'(x) & - & 0 & + \\ \hline h(x) & +00 & & +00 \\ \end{array}$	1	

	2b	$\lim_{x \to +\infty} \frac{h(x)}{x} = +\infty \text{ donc (C) admet}$ une direction asymptotique verticale	1
	2c	Le minimum de h(x) est 0, donc h(x) ≥ 0 , d'où $e^x - x - 1 \geq 0$, donc $e^x \geq x + 1$.	0,5
	1	$h(x) \ge 0$; $e^x - x \ge 1$ donc $e^x - x > 0$ donc $D_f = \square$	1
	2	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x}{e^x \left(1 - \frac{x}{e^x}\right)} = 1, \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x}{e^x - x} = \frac{0}{+\infty} = 0.$	1
	3	$f'(x) = \frac{(1-x)e^{x}}{(e^{x}-x)^{2}}.$ $\frac{x - oo}{f'(x)} - 0 + \frac{e}{e-1}$	1,5
	4a	y = x + 1.	1
	4b	$f(x) - (x+1) = \frac{e^x}{e^x - x} - (x+1) = \frac{e^x - (x+1)(e^x - x)}{e^x - x} = \frac{x(x - e^x + 1)}{e^x - x}$	1
	4c	Pour $x < 0$; $f(x) - (x+1) > 0$, (C') est au-dessus de (T) . Pour $x > 0$; $f(x) - (x+1) < 0$, (C') est en dessous de (T) . Pour $x = 0$, (C') coupe (T) .	1
В	4d		1
	1	$u_{n+1} - u_n = \int_0^{n+1} f(x) dx - \int_0^n f(x) dx = \int_0^{n+1} f(x) dx + \int_n^0 f(x) dx = \int_n^{n+1} f(x) dx.$ Or $f(x) > 0$ donc $\int_0^{n+1} f(x) dx > 0$ par suite (u_n) est croissante.	1
С	2a	$f(x) - 1 = \frac{e^{x}}{e^{x} - x} - 1 = \frac{e^{x} - e^{x} + x}{e^{x} - x} = \frac{x}{e^{x} - x} \ge 0 \text{ donc } f(x) \ge 1 \text{ pour tout } x \ge 0.$	1
	2b	$\int\limits_0^n f(x) dx \geq \int\limits_0^n dx \ car \ n \geq 0 \ d'où \ u_n \geq n \ ; \lim_{n \to +\infty} u_n \geq \lim_{n \to +\infty} n \ ; \lim_{n \to +\infty} u_n \geq +\infty \ donc $ $\left(u_n\right) \text{est divergente.}$	1