| الاسم     | مسابقة في الرياضيات | عدد المسائل أربع |
|-----------|---------------------|------------------|
| ، ب ـــــ | معتب في مريقي       |                  |
| ال قم.    | المدة ساعتان        |                  |
| ·~~·      |                     |                  |
|           |                     |                  |

**ملاحظة:** يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو تخزين المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

## I- (4 points)

The following table shows, the medical care expenses, in millions LL, of a big industrial company between the years 2000 and 2007.

| Year                                        | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  |
|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Rank of the year x <sub>i</sub>             | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| Expenses y <sub>i</sub><br>(in millions LL) | 115.1 | 115.2 | 121.7 | 129.5 | 137.9 | 144.9 | 156.5 | 163.8 |

1) a - Write an equation of the regression line (D  $_{y/x}$ ) of y in terms of x.

b- Assume that the growth in the medical care expenses follows the same pattern for the following years; estimate the expenses in 2015.

2) The company wishes that, starting from the year 2008, the medical care expenses grow only by 2% per year and continue to increase in the same manner from one year to another. This growth is modeled by a sequence  $(u_n)$  where  $u_n$  denotes the medical care expenses, in millions LL, for the year (2007 + n). Thus  $u_0 = 163.8$ .

a-Verify that  $u_1 = 167.076$  and calculate  $u_2$ .

b-Justify that  $(u_n)$  is a geometric sequence and specify its common ratio.

c-Does the company save money in 2015 by following the new model? Justify.

# II- (4 points)

The 60 students of a language class have the choice to learn Arabic, English or French. (Each student chooses only one language).

- 25% of the students learn Arabic out of whom 6 are girls;
- 30% of the students learn English out of whom10 are boys;
- The class contains a total of 25 girls.

1) Copy and complete the following table :

| <b></b> | Learn Arabic | Learn English | Learn French | Total |
|---------|--------------|---------------|--------------|-------|
| Girls   |              |               | 11           |       |
| Boys    |              |               |              |       |
| Total   |              |               |              | 60    |

2) A student is randomly chosen from this class. Consider the following events :

- E: « the chosen student learns English» ;
- B : « the chosen student is a boy ».
- a Calculate the probabilities P(E), P(B) and  $P(E \cap B)$ .

b - Show that P (E 
$$\cup$$
 B) =  $\frac{43}{60}$  and calculate P ( $\overline{E} \cap \overline{B}$ ).

3) In what follows, a group of two students is chosen randomly from this class.

- a- Calculate the probability of the event S « The two chosen students learn the same language ».
- b- The two chosen students are boys. Calculate the probability that they learn French.

#### **III-(4 points)**

Answer by true or false to each of the following statements. Justify the answer.

1) If the curve (C) to the right represents the function f defined on IR as  $f(x) = 1 - e^{-x}$ , then the area of the region bounded by (C), the x-axis and the lines with equations x = -1 and x = 2,

is equal to 
$$\left(e + \frac{1}{e^2} + 1\right)$$
 square units.

- 2) The set of solutions of the inequality  $\ln (2x-1) \ln (10-4x) < 0$  is  $\left| -\infty; \frac{11}{6} \right|$ .
- 3) Rami deposited a capital of 20 000 000 LL in a bank at 8% annual interest compounded annually. In the same time, Sami deposited a capital of 22 000 000 LL in another bank at 7% annual interest compounded annually. The future value in Rami's account will be, for the first time, greater than that of Sami after 11 years.

### IV- (8 points)

- A- Consider the function g defined on I =  $[0; +\infty)$  as  $g(x) = 1 + \frac{x-3}{8}e^x$ .
- 1) Show that  $g'(x) = \frac{1}{8}(x-2)e^x$ .
- 2) Set up the table of variations of the function g and verify that g(x) > 0 for all x in I.
- **B-** Let f be the function defined on  $[0; +\infty)$  as  $f(x) = x + 1 + \frac{x-4}{8}e^x$ .

Denote by (C) the representative curve of f in an orthonormal system .

- 1) Calculate f(0) and f(4) and determine  $\lim f(x)$ .
- 2) Verify that f'(x) = g(x) and set up the table of variations of f.
- 3) Write an equation of the tangent (T) to (C) at the point with abscissa 3.

4) Plot (T) and (C).

5) The line (d) with equation  $y = \frac{9}{8}x$  intersects (C) in two points with respective abscissas  $\alpha$  and  $\beta$  ( $\alpha < \beta$ ). Verify that 0.7<  $\alpha < 0.9$ .

#### C-

In what follows, take  $\alpha = 0.813$  and  $\beta = 3.919$ .

A company produces objects. The total cost of production, in millions LL, is given by :

 $f(x) = x + 1 + \frac{x-4}{8}e^x$  where x is the number, in thousands, of objects produced, with  $0 \le x \le 4$ .

- 1) Calculate the fixed cost.
- 2) Calculate the marginal cost of producing 2000 objects . Give an economical interpretation to the result.
- 3) Each produced object is sold for 1125 LL and suppose that the production is sold entirely.

a- Show that the function of the revenue R is given by  $R(x) = \frac{9}{8}x$ .

b- For what level of production will the company realize profit? Justify.





| <b>Q</b> <sub>1</sub> | Answers                                                                                                                               | М   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.a                   | The equation of line (D $_{y/x}$ ) : y = 7.445 x + 109.516.                                                                           | 1   |
| 1.b                   | An estimation of the expenses is $y = 7.445 \times 15 + 109.516 = 221\ 191\ 000\ LL$ .                                                | 1   |
| 2.a                   | $u_1 = u_0 (1+0.02) = 167.076.$<br>$u_2 = u_1 (1+0.02) = 170.417.$                                                                    | 2   |
| 2.b                   | $u_n = u_{n-1} (1+0.02) = 1.02 u_{n-1}$ . Hence $(u_n)$ is a geometric sequence with common ratio $r = 1.02$ .                        | 1.5 |
| 2.c                   | 2015 = 2007+8, then n = 8. $u_8 = u_0 r^8 = 163.8 (1.02)^8 = 191.917$ 806 that is<br>191 91780LL.<br>The company saves 29 274 000 LL. | 1.5 |

| Q <sub>2</sub> | Answers                                                                                                                                                                                                                                                                     |                              |                                |                    |                                              |     |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|--------------------|----------------------------------------------|-----|
| 1              | Girls<br>Boys<br>Total                                                                                                                                                                                                                                                      | Study Arabic<br>6<br>9<br>15 | Study English<br>8<br>10<br>18 | Study French111627 | Total           25           35           60 | 1   |
| 2.a            | $P(E) = \frac{18}{60} = \frac{3}{10}$ . $P(B) = \frac{35}{60} = \frac{7}{12}$ . $P(E \cap B) = \frac{10}{60} = \frac{1}{6}$ .                                                                                                                                               |                              |                                |                    |                                              |     |
| 2.b            | $P(E \cup B) = P(E) + P(B) - P(E \cap B) = \frac{43}{60}.  P(\overline{E} \cap \overline{B}) = \frac{6+11}{60} = \frac{17}{60}. \text{ OR:}$ $\overline{E} \cap \overline{B} = \overline{E \cup B}  P(\overline{E} \cap \overline{B}) = 1 - \frac{43}{60} = \frac{17}{60}.$ |                              |                                |                    |                                              |     |
| 3.a            | $P(S) = \frac{C_{15}^2}{C_{22}^2} + \frac{C_{18}^2}{C_{22}^2} + \frac{C_{27}^2}{C_{22}^2} = \frac{203}{590}.$                                                                                                                                                               |                              |                                |                    |                                              | 1.5 |
| 3.b            | $P(FF/BB) = \frac{C_{16}^2}{C_{35}^2} = \frac{24}{119}$                                                                                                                                                                                                                     | <u>.</u>                     |                                |                    |                                              | 2   |

| Q3 | Answers                                                                                                                                                                                                                                                             | Μ   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1  | $A = -\int_{-1}^{0} (1 - e^{-x}) dx + \int_{0}^{2} (1 - e^{-x}) dx = -\left[x + e^{-x}\right]_{-1}^{0} + \left[x + e^{-x}\right]_{0}^{2} = \left(e + \frac{1}{e^{2}} - 1\right) \text{ square units.} \qquad \mathbf{F}$                                            | 2.5 |
| 2  | Domain of definition : $2x-1 > 0$ and $10 - 4x > 0$ , hence $\frac{1}{2} < x < \frac{5}{2}$ .<br>ln( $2x-1$ ) < ln( $10 - 4x$ ) ; $2x-1 < 10 - 4x$ ; $x < \frac{11}{6}$ . therefore $\frac{1}{2} < x < \frac{11}{6}$ . <b>F</b>                                     | 2   |
| 4  | $C_{n} = C_{0} (1+i)^{n} \Longrightarrow 2000000(1+0.08)^{n} > 22000000(1+0.07)^{n} \Longrightarrow$ $\left(\frac{1.08}{1.07}\right)^{n} > 1.1, \text{ hence } n \ln\left(\frac{1.08}{1.07}\right) > \ln 1.1 \Longrightarrow n > 10.245 \Longrightarrow n = 11. $ T | 2.5 |

