	• • · · · N1	c1.	مسابقة فيمادة الفرز		
	, a mag.	24	متعابقة في مادة الغير ا		
	11, 6		المدة ساعة		
	،درسم.				
		1 0 1		• •	

This exam is formed of three obligatory exercises in two pages Non- programmable calculators are allowed.

First exercise (7 points)

Focal length of a converging lens

The aim of this exercise is to determine the focal length of a converging lens.

On the diagram below, AB represents a luminous object, (L) a converging lens and (E) a screen on which the image A'B' of AB is given by (L).

I) Showing evidence of the nature of (L)

- 1) Is the image A'B' of AB real or virtual? Justify.
- **2**) Deduce that (L) is a converging lens.

II) <u>Determination of the focal length of (L)</u>

- 1) Redraw, on the graph paper and by same scale, the above diagram.
- **2**) Place on the drawn diagram the point image $A \square$ of A given by (L). Justify.
- **3**)a) By tracing one particular ray issued from B, construct the image $B \square$ of B given by (L).
- **b**) Trace the image $A \square B \square$ of AB Deduce its size.
- 4) Trace the path of a luminous ray issued from B and parallel to the optical axis.
- **5**) **a**) Indicate the position of the image focus $F\Box$ of (L). Explain.
 - **b**) Deduce the focal length f of (L).

Second exercise (7 points) Normal functioning of a lamp

The circuit of figure 1 consists of:

- a generator (G) delivering across its terminals a constant voltage $U_{AC} = 12V$;
- a resistor (D) of resistance R;
- a lamp (L) carries the inscriptions (9V;30mA);
- a closed switch (K);
- an oscilloscope connected across the terminals of (D).

The aim of this exercise is to determine the value of R of (D) in order to let the lamp function normally.

I. Role of (D)

- 1) What do the inscriptions 9V and 30mA of (L) represent?
- 2) If (L) is connected directly across the terminals of (G), it burns out. Justify.
- **3**) Deduce the role of (D) in this circuit.

II. Exploitation of the waveform

Figure 2 shows the waveform displayed by the oscilloscope. Given: vertical sensitivity: $S_v = 1 \text{ V/div}$. **1**) **a**) Does the oscilloscope measure U_{AB} or U_{BA} ? Justify.

b) Calculate the value of U_{AB}.

c) Deduce the value of the voltage U_{BC} and name the used law.

2) (L) functions normally. Justify.

III. Determination of the value of R

1) Specify the value of the intensity I of the current traversing the circuit.

2) Deduce the value of R.

Figure 2

Third exercise (6 points) Determination of the density of a liquid

Consider a U tube containing a certain amount of water (figure 1). Given: atmospheric pressure: $P_{at} = 76$ cm of mercury;

Density of mercury: $\rho_{Hg} = 13600 \text{ kg/m}^3 \text{and } g = 10 \text{ N/kg}.$

1) a) The two free surfaces of water are at the same horizontal plane. Justify.

b) Calculate, in Pa, the value of the pressure at A and that at B in figure 1.

2) We want to determine the density $\rho \Box$ of a certain liquid (L) that does not mix with water. For this reason, we pour in branch (1) of the tube an amount of oil to a height h = 20 cm and of density $\rho = 900 \text{ kg/m}^3$ and in branch (2) a certain amount of (L) to a height h' = 16 cm. The surfaces of separation (water-oil) and (water-liquid) are at the same horizontal plane (figure 2).

- a) Determine, in Pa, the value of the total pressure at A.
- **b**) Deduce, in Pa, the value of the total pressure at B.
- c) Give the expression of the total pressure at B as a function of $\rho \Box$.
- **d**) Deduce the value of $\rho \Box$.

Figure 1

الاسم:	مسابقة في مادة الفيزياء	مشروع معيار التصحيح
الرقم:	المدة ساعة	

First exer	cise (7 points)	
Part of the Q	Answer	Mark
I. 1)	A'B' is a real image	1
I. 2)	L is converging since it gives a real image.	0.5
II. 1)	Redrawing	0.5
II. 2)	Position of $A \square$ on the diagram(0.5) $A \square$ is found on (E) and on the other hand it is on the optical axis thus $A \square$ is the intersection of (E) with optical axis(0.5)	1
II. 3) a)	Trace of ray BO(0.5) Image B \square on the screen. The incident ray BO passes through optical center continues its path undeviated passes through B \square , B \square is the intersection of ray BO with (E)(0.5)	1
II. 3) b)	See diagram (For image)(0.5) size $A \square B \square = 2x1 = 2cm$ (0.5)	1
II. 4)	Trace(0.5)	0.5
II. 5) a)	See diagram(0.5) $F \square$ is the point of intersection between the emergent ray corresponding to the parallel incident ray then it is the image focus	1
II. 5) b)	f = OF' = 2x2 = 4cm	0.5

Second exercise (7 points)

Part of the Q	Answer	Mark	
I.1)	9V is the rated voltage of the lamp	1	
I.2)	Since the voltage of the generator is greater than the rated voltage of (L)		
I.3)	(D) plays a role of protecting lamp from burning	0.5	
II.1)a)	It measures the voltage U _{AB} (0.25) Oscilloscope measures voltage between phase(E) and mass (M) Since the terminal A is connected to the phase of the oscilloscope(0.5)	0.75	
II.1)b)	$U_{AB} = S_v xy = 1 \times 3 = 3V$	0.5	
II.1)c)	$U_{AC} = U_{AB} + U_{BC}$	1.5	
II.2)	$U_{BC} = 9V$ is equal to the rated voltage of the lamp	0.5	
III.1)	Since the lamp functions normally	1	
III.2)	$R = \frac{u_{AB}}{l} \dots \dots$	0.75	

Third exercise (6 points)

Part of the Q	Answer	Mark
1.a	Since they are under same atmospheric pressure in the same liquid at equilibrium	
1.b	$ \begin{array}{l} P_{A} = P_{B} = P_{at} \qquad (0.25) \\ P_{atm} = \rho_{Hg.}g.H \qquad (0.5) \\ P = 103360 \ Pa. \qquad (0.25) \end{array} $	1
2.a	$P_{A} = P_{oil} + P_{at} $ (0.5) $P_{A} = \rho_{oil} g.h + 103360 Pa = 105160 $ (1)	1.5
2.b	$P_B = P_A = 105160 \text{ Pa}$ (0.25) Since B and A are at the same horizontal level in the same liquid at equilibrium	0.75
2.c	$P_{B} = P_{L} + P_{at}$ $P_{B} = \rho'gh' + P_{at}(0.5)$ $P_{B} = 1.6 \rho' + 103360(0.5)$	1
2.d	$\rho' = \frac{105160 - 103360}{1.6} = 1125 \text{ kg/m}^3.$	1