الرقم: الاسم:	مسابقةّ في مادة الرياضيات المدة: ساعتان	الاثثين 1 تموز 2013 عدد المسائل: اريع
ملاحظة: - يسمح باستُعمال اللة حاسبة غير قابلة للبرمجة أو اختز ان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالتلتيب الذي يناسبه (دون الالتزام بترتيب المسائلل الواردة في المسابقة)		

I-(4points)

In the space referred to a direct orthonormal system $(O ; \vec{i}, \vec{j}, \vec{k})$, consider the points:
A $(4 ; 2 ; 0), \mathrm{B}(2 ; 3 ; 1)$ and $\mathrm{C}(2 ; 2 ; 2)$.

1) Prove that triangle $A B C$ is right at B.
2) Show that an equation of the plane (P) determined by the three points A, B and C is $x+y+z-6=0$.
3) Let (Q) be the plane passing through A and perpendicular to (AB).
a- Determine an equation of (Q).
b- Denote by (D) the line of intersection of (P) and (Q), show that (D) is parallel to (BC).
4) Let $\mathrm{H}(5 ; 3 ; 1)$ be a point in (Q).
a- Show that A is the orthogonal projection of H on (P).
b- Calculate the volume of the tetrahedron HABC.

II-(4points)

A music store sells classical and modern musical albums only.
The customers of this store are surveyed and the results are as follows:

- 20% of these customers bought each a classical album.
- Out of those who bought a classical album, 70% bought a modern album.
- 22% of the customers bought each a modern album.

A customer of the store is interviewed at random. Consider the following events:
$\mathrm{C}:$ «the interviewed customer bought a classical album »
M : «the interviewed customer bought a modern album ».

1) Calculate the probability $\mathrm{P}(\mathrm{C} \cap \mathrm{M})$ and verify that $\mathrm{P}(\mathrm{C} \cap \overline{\mathrm{M}})=0.06$.
2) Prove that $\mathrm{P}(\overline{\mathrm{C}} \cap \overline{\mathrm{M}})=0.72$.
3) Calculate the probability that the customer bought at least one album.
4) Knowing that the customer didn't buy a modern album, calculate the probability that he bought a classical album.
5) The classical album is sold for 30000 LL and the modern one is sold for 20000 LL .

Let X be the random variable that is equal to the sum paid by a customer.
a- Justify that the possible values of X are: $0,20000,30000$ and 50000 . Then, determine the probability distribution of X .
b- During the month of June, 300 customers visited this music store. Estimate the revenue of this store during that month.

III(4 points)

In the plane referred to a direct orthonormal system $(O ; \vec{u}, \vec{v})$, consider the points A, B and C with respective affixes $\mathrm{z}_{\mathrm{A}}=\mathrm{i}, \mathrm{z}_{\mathrm{B}}=3-2 \mathrm{i} \quad$ and $\mathrm{z}_{\mathrm{C}}=1$.

1) Prove that the points A, B and C are collinear.
2) Consider the complex number $w=z_{C}-z_{A}$.

Write w in exponential form and deduce that w^{20} is a real negative number.
3) Let M be a point in the plane with affix z.
a- Give a geometric interpretation to $|z-i|$ and $|z-1|$.
b- Suppose that $|z-i|=|z-1|$; show that the point M moves on a line to be determined.
c- Prove that if $(z-i) \times(\bar{z}+i)=16$, then the point M moves a circle whose center and radius to be determined.

IV-(8points)

Consider the function f defined on \mathbb{R} as $f(x)=3-\frac{4}{e^{2 x}+1}$.
Let (C) be its representative curve in an orthonormal system (unit $\mathbf{2} \mathbf{~ c m}$).

1) Calculate $\lim _{x \rightarrow-\infty} f(x), \lim _{x \rightarrow+\infty} f(x)$ and deduce the asymptotes to (C).
2) Prove that f is strictly increasing over \mathbb{R} and set up its table of variations.
3) The curve (C) has a point of inflection W with abscissa 0 . Write an equation of (T), the tangent to (C) at the point W .
4) a- Calculate the abscissa of the point of intersection of (C) with the x-axis.
b- Draw (T) and (C).
5) a- Verify that $f(x)=-1+\frac{4 e^{2 x}}{e^{2 x}+1}$ and deduce an antiderivative F of f.
b- Calculate, in cm^{2}, the area of the region bounded by the curve (C), the x - axis, the y -axis and the line with equation $x=\ln 2$.
6) The function f has over \mathbb{R} an inverse function g. Denote by (G) the representative curve of g. a- Specify the domain of definition of g.
b- Show that (G) has a point of inflection J whose coordinates to be determined.
c- $\operatorname{Draw}(\mathrm{G})$ in the same system as (C).
d- Determine $\mathrm{g}(\mathrm{x})$ in terms of x .

Math l.S Barome 2013-1

Q_{1}	Answers	M
1	$\overrightarrow{\mathrm{AB}}(-2 ; 1 ; 1), \overrightarrow{\mathrm{BC}}(0 ;-1 ; 1) ; \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}=0$, hence triangle ABC is right at B .	0.5
2	$\mathrm{x}_{\mathrm{A}}+\mathrm{y}_{\mathrm{A}}+\mathrm{z}_{\mathrm{A}}-6=0$, then A is in $(\mathrm{P}) ; \mathrm{x}_{\mathrm{B}}+\mathrm{y}_{\mathrm{B}}+\mathrm{z}_{\mathrm{B}}-6=0$, then B belongs to (P) and $\mathrm{x}_{\mathrm{C}}+\mathrm{y}_{\mathrm{C}}+\mathrm{z}_{\mathrm{C}}-6=0$, then C is in (P) Therefore $(\mathrm{P}): x+y+z-6=0$. Or $\overrightarrow{\mathrm{AM}} \cdot(\overrightarrow{\mathrm{AB}} \wedge \overrightarrow{\mathrm{AC}})=0$ with $\mathrm{M}(\mathrm{x}: \mathrm{y} ; \mathrm{z})$ any point in (P).	0.5
3. a	For any point $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in $(\mathrm{Q}) ; \overrightarrow{\mathrm{AM}} \cdot \overrightarrow{\mathrm{AB}}=0 ; \quad(\mathrm{Q}):-2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}+6=0$.	0.5
3. b	A directing vector of (D) is $\vec{V}=\vec{n}_{P} \wedge \vec{n}_{Q}$, hence $\vec{V}(0 ;-3 ; 3)$, et $\overrightarrow{B C}(0 ;-1 ; 1)$ and $B \notin(Q)$, so $B \notin(D)$. Thus, (D) is parallel to (BC). Or : Since $(B C)$ is perpendicular to $(A B)$ and $(A B)$ is perpendicular to (D) in $A,(B C)$ and (D) being coplanar in (P) and perpendicular to the same line (AB), are parallel.	1
4. a	$\mathrm{A} \in(\mathrm{P}), \overrightarrow{\mathrm{AH}}(1 ; 1 ; 1)$ and $\overrightarrow{\mathrm{n}}_{\mathrm{P}}(1 ; 1 ; 1)$ hence (AH$)$ is perpendicular to (P).	1
4. b	The volume of tetrahedron HABC is equal to $\mathrm{V}=\frac{1}{3} \mathrm{HA} \times$ area of triangle $\mathrm{ABC}=\frac{1}{6} \times \mathrm{BA} \times \mathrm{BC} \times \sqrt{3}=1 \mathrm{u}^{3} . \underline{\mathbf{O r}} \quad \mathrm{V}=\frac{\|\overrightarrow{\mathrm{AH}} \cdot(\overrightarrow{\mathrm{AB}} \wedge \overrightarrow{\mathrm{AC}})\|}{6}=\frac{6}{6}=1 \mathrm{u}^{3}$.	0.5

Q 2	Answers					M
1	$\mathrm{P}(\mathrm{C} \cap \mathrm{M})=\mathrm{P}(\mathrm{C}) \times \mathrm{P}(\mathrm{M} / \mathrm{C})=0.14 . \quad \mathrm{P}(\mathrm{C} \cap \overline{\mathrm{M}})=\mathrm{P}(\mathrm{C}) \times \mathrm{P}(\overline{\mathrm{M}} / \mathrm{C})=0.06$.					1
2	$\mathrm{P}(\mathrm{C} \cap \overline{\mathrm{M}})+\mathrm{P}(\overline{\mathrm{C}} \cap \overline{\mathrm{M}})=\mathrm{P}(\overline{\mathrm{M}})=1-\mathrm{P}(\mathrm{M})$ then $\mathrm{P}(\overline{\mathrm{C}} \cap \overline{\mathrm{M}})=0.78-0.06=0.72$.					0.5
3	$\mathrm{P}($ at least an album $)=1-\mathrm{P}(\overline{\mathrm{C}} \cap \overline{\mathrm{M}})=0.28$.					0.5
4	$\mathrm{P}(\mathrm{C} / \overline{\mathrm{M}})=\frac{\mathrm{P}(\mathrm{C} \cap \overline{\mathrm{M}})}{\mathrm{P}(\overline{\mathrm{M}})}=\frac{0.06}{0.78}=\frac{1}{13} .$					0.5
5a	The four possible values are : 0 (the costumer did not buy anything), 20000 (the costumer bought a modern album), 30000 (the costumer bought a classical album), 50000 (the costumer bought two albums).					1
	X_{i}	0	20000	30000	50000	
	P_{i}	0.72	0.08	0.06	0.14	
5b	$\begin{aligned} & \mathrm{E}(\mathrm{X})=\sum \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=0 \times 0.72+20000 \times 0.08+30000 \times 0.06+50000 \times 0.14=10400 \mathrm{~L} \mathrm{~L} \\ & \mathrm{R}=\mathrm{E}(\mathrm{X}) \times 300=10400 \times 300=3120000 \mathrm{LL} \end{aligned}$					0.5

Q_{3}	Answers	M
1	$\mathrm{z}_{\mathrm{A}}-\mathrm{z}_{\mathrm{B}}=-3+3 \mathrm{i}$ and $\mathrm{z}_{\mathrm{A}}-\mathrm{z}_{\mathrm{C}}=-1+$ i. $\mathrm{z}_{\mathrm{A}}-\mathrm{z}_{\mathrm{B}}=3\left(\mathrm{z}_{\mathrm{A}}-\mathrm{z}_{\mathrm{C}}\right)$ and $\mathrm{z}_{\overrightarrow{\mathrm{BA}}}-\overrightarrow{\mathrm{CA}}$; par suite $\overrightarrow{\mathrm{BA}}=3 \overrightarrow{\mathrm{CA}}$ and the three points A, B and C are collinear.	0.5
2	$\mathrm{w}=\mathrm{z} \underset{\mathrm{AC}}{ }=1-\mathrm{i}=\sqrt{2} \mathrm{e}^{-\mathrm{i} \frac{\pi}{4}}, \quad \mathrm{w}^{20}=(\sqrt{2})^{20} \mathrm{e}^{-5 \mathrm{i} \pi}=-(\sqrt{2})^{20}$ which is real negative.	1
3. a	$\|\mathrm{z}-\mathrm{i}\|=\left\|\mathrm{z}_{\mathrm{M}}-\mathrm{z}_{\mathrm{A}}\right\|=\mathrm{AM} ; \quad\|\mathrm{z}-1\|=\left\|\mathrm{z}_{\mathrm{M}}-\mathrm{z}_{\mathrm{C}}\right\|=\mathrm{CM}$.	0.5
3. b	If z_{M} verifies $\|\mathrm{Z}-\mathrm{i}\|=\|\mathrm{Z}-1\|$, so $\mathrm{MA}=\mathrm{MC}$; and the point M varies on the perpendicular bisector of segment [AC].	1
3. c	If z_{M} verify $(z-i) \times(\bar{z}+i)=16 \Leftrightarrow\left(z_{M}-z_{A}\right) \times\left(\overline{z_{M}-z_{A}}\right)=16 \Leftrightarrow\left\|z_{M}-z_{A}\right\| \times\left\|\overline{z_{M}-z_{A}}\right\|=16$ $\Leftrightarrow\left\|z_{M}-z_{A}\right\| \times\left\|z_{M}-z_{A}\right\|=16$. Hence $A M^{2}=16$; therefore the point M belongs to the circle with center A and radius 4 .	1

Q4	Answers	M
1	$\lim _{x \rightarrow-\infty} f(x)=3-4=-1$ and $\lim _{x \rightarrow+\infty} f(x)=3$. Hence (C) has two asymptotes with equations $y=3$ and $y=-1$.	1
2	$f^{\prime}(x)=\frac{8 e^{2 x}}{\left(e^{2 x}+1\right)^{2}}>0 ; f$ is strictly increasing over IR.	1
3	Slope of $(T)=\mathrm{f}^{\prime}(0)=2$, and (T) passes through the point $\mathrm{W}(0 ; 1)$, then the equation of (T) is : $\mathrm{y}=2 \mathrm{x}+1$.	0.5
4. a	$\mathrm{f}(\mathrm{x})=0 \Leftrightarrow 3=\frac{4}{\mathrm{e}^{2 \mathrm{x}}+1} \Leftrightarrow \mathrm{e}^{2 \mathrm{x}}=\frac{1}{3} \Leftrightarrow \mathrm{x}=-\frac{\ln 3}{2}$.	0.5
4.b		1
5-a	$\begin{aligned} & f(x)=3-\frac{4}{e^{2 x}+1}=\frac{3 e^{2 x}-1}{e^{2 x}+1} \text { et } 1+\frac{4 e^{2 x}}{e^{2 x}+1}=\frac{3 e^{2 x}-1}{e^{2 x}+1} \\ & F(x)=\int f(x) d x=\int\left(-1+\frac{4 e^{2 x}}{e^{2 x}+1}\right) d x=-x+2 \int \frac{2 e^{2 x}}{e^{2 x}+1} d x=-x+2 \ln \left(e^{2 x}+1\right)+c . \end{aligned}$	1
5-b	$\begin{aligned} & \mathrm{A}=4 \mathrm{~A}^{\prime} \mathrm{cm}^{2} . \\ & \mathrm{A}^{\prime}=\int_{0}^{\ln 2} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\left[-\mathrm{x}+2 \ln \left(\mathrm{e}^{2 \mathrm{x}}+1\right)\right]_{0}^{\ln 2}=2 \ln 5-3 \ln 2=\ln \left(\frac{25}{8}\right) . \text { Thus, } \mathrm{A}=4 \ln \left(\frac{25}{8}\right) \mathrm{cm}^{2} . \end{aligned}$	0.5
6. a	Dom (g) =]-1; 3[.	0.5
6. b	$\mathrm{W}(0,1)$ is a point of inflection of (C), then the symmetric of W with respect to the line with equation $y=x$ is the point $J(1 ; 0)$, which is the point of inflection of (G).	0.5
6. c	(G) is the symmetric of © with respect to the line with equation $\mathrm{y}=\mathrm{x}$.	0.5
6. d	$\begin{array}{ll} \mathrm{y}=\mathrm{g}(\mathrm{x}) \leftrightarrows \mathrm{x}=\mathrm{f}(\mathrm{y}) \leftrightarrows & \mathrm{x}=3-\frac{4}{\mathrm{e}^{2 \mathrm{y}}+1} \quad \leftrightarrows \quad \frac{4}{\mathrm{e}^{2 \mathrm{y}}+1}=3-\mathrm{x} \quad \leftrightarrows \quad \mathrm{e}^{2 \mathrm{y}}+1=\frac{4}{3-\mathrm{x}} \leftrightarrows \\ \mathrm{e}^{2 \mathrm{y}}=\frac{4}{3-\mathrm{x}}-1=\frac{1+\mathrm{x}}{3-\mathrm{x}} . & \text { Thus, } 2 \mathrm{y}=\ln \left(\frac{1+\mathrm{x}}{3-\mathrm{x}}\right) ; \quad \mathrm{y}=\mathrm{g}(\mathrm{x})=\frac{1}{2} \ln \left(\frac{1+\mathrm{x}}{3-\mathrm{x}}\right) . \end{array}$	1

