		دانره الإهنصات
الاسم:	مسابقة في مادة الكيمياء	الجمعة 28 حزيران 2013
الرقم:	المدة : ساعتان	

Cette épreuve est constituée de trois exercices. Elle comporte quatre pages numérotées de 1 à 4. L'usage d'une calculatrice non programmable est autorisé.

Traiter les trois exercices suivants :

Premier exercice (6 points) Cinétique d'une réaction d'hydrolyse

Un chlorure d'alkyle, R – Cl, réagit sur l'eau pour donner l'alcool 2-méthylpropan-2-ol, suivant une réaction lente et totale dont l'équation est la suivante :

$$R-Cl + 2H_2O \rightarrow R-OH + H_3O^+ + Cl^-$$

On prépare un mélange en dissolvant 9,2 mmol de chlorure d'alkyle R – Cl dans 3 mL d'acétone.

A l'instant t = 0, on verse ce mélange dans un bécher contenant 50 mL d'eau distillée.

Le suivi cinétique, assuré par une méthode convenable, permet de dresser un tableau représentant la quantité de R – OH formé à des dates différentes de l'évolution du système réactionnel.

t (min)	2	5	10	15	20	30	40	50
n(R-OH) mmol	1,6	3,3	5,3	6,6	7,4	8,4	8,8	8,9

(Dans ce mélange, l'acétone joue le rôle d'un solvant et l'eau est en large excès).

Donnée : Le composé R – Cl est très soluble dans un mélange eau – acétone.

1- Etude préliminaire

- 1.1- L'acétone utilisée, de formule brute C₃H₆O, appartient à la famille des cétones. Ecrire la formule semi-développée de ce composé et donner son nom systématique.
- 1.2- Préciser la classe de l'alcool formé dans la réaction d'hydrolyse de R Cl.
- 1.3- Ecrire les formules semi-développées des alcools isomères de cet alcool.

2- Suivi cinétique

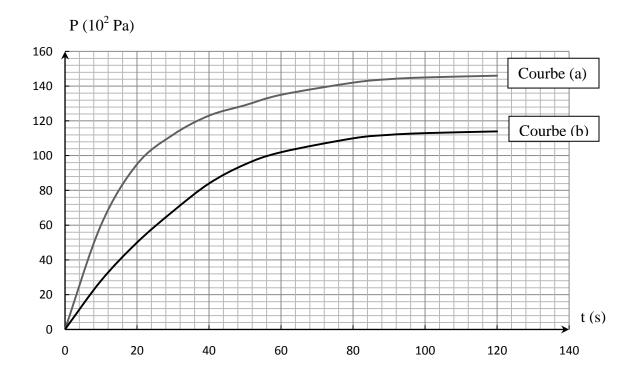
- 2.1- Tracer la courbe représentant la variation de la quantité de R OH formé en fonction du temps : n (R OH) = f (t) dans l'intervalle de temps : [0 50 min]. Prendre les échelles suivantes : 1 cm pour 5 min en abscisses et 1 cm pour 1,0 mmol en ordonnées.
- 2.2- Déterminer la vitesse de formation de R OH à t = 15 min.
- 2.3- Comparer la vitesse de formation initiale de R OH à celle trouvée à t = 15 min.
- 2.4- Déterminer le temps de demi-réaction.
- 2.5- On reprend le même suivi réalisé ci- haut, mais avec une seule modification :
 Le mélange (R Cl + acétone) contient 5,0 mmol de R Cl.
 Tracer, sur le même graphe de la question 2.1, l'allure de la courbe représentant la nouvelle variation de la quantité de R OH en fonction du temps : n(R OH) = g (t). Justifier.

Deuxième exercice (7 points) L'acide méthanoïque

L'acide méthanoïque de formule HCOOH est un acide faible qui se présente sous forme d'un liquide incolore à odeur désagréable. Il est utilisé comme détartrant, dans la synthèse de quelques esters...

1- Acide méthanoïque et le tartre

Données:


- Constante des gaz parfaits : $R = 8.3 \text{ J.mol}^{-1}.\text{K}^{-1}$;
- Le gaz CO₂ est supposé parfait ;
- M (CaCO₃) = 100 g.mol^{-1} .

Le tartre est essentiellement constitué d'un dépôt solide de carbonate de calcium. Lors d'un ajout d'une solution d'acide méthanoïque, on aura une réaction dont l'équation est :

$$CaCO_{3(s)} \, + 2 \, HCOOH \, \, \rightarrow \, \, Ca^{2+} \, + 2HCOO^{-} \, + \, \, CO_{2(g)} + H_2O$$

On verse un excès d'une solution d'acide méthanoïque dans un ballon contenant une masse m = 245 mg de carbonate de calcium. Par une méthode appropriée, on mesure la pression P du gaz CO_2 produit par cette réaction dans un volume V = 500 mL et à une température constante de 25° C.

L'évolution de cette pression P au cours du temps est représentée par l'une des deux courbes (a) ou (b) suivantes :

1.1- L'équation, déjà donnée, est le bilan de deux réactions dont les équations sont :

$$(Ca^{2+}, CO_3^{2-})_{(s)} + HCOOH \rightarrow Ca^{2+} + HCOO^{-} + HCO_3^{-}$$

 $HCOOH + HCO_3^{-} \rightarrow HCOO^{-} + CO_{2(g)} + H_2O$

- 1.1.1- Tirer des équations de ces deux réactions les couples acide-base mis en jeu.
- 1.1.2- Ecrire la formule de l'espèce amphotère (ampholyte) figurant dans ces couples.
- 1.1.3- Nommer la base conjuguée de l'acide méthanoïque.
- 1.2- Choisir, en justifiant, du graphe précédent la courbe correspondante à l'évolution de la pression P en fonction du temps.

2- Préparation d'un ester

Données:

- Masse molaire en g.mol⁻¹: M (HCOOH) = 46; M (butan-1-ol) = 74 et M (ester) = 102;
- Masse volumique du butan-1-ol : $\mu = 0.8 \text{ g.mL}^{-1}$.

On chauffe un mélange de 30 g d'acide méthanoïque et un volume V = 38 mL de butan-1-ol. Après un certain temps, on arrête le chauffage et on dose la quantité d'acide restant. Le résultat du dosage donne une quantité d'acide restant égale à 0,40 mol.

- 2.1- Écrire l'équation de la réaction qui a lieu, en utilisant les formules semi-développées des composés organiques. Nommer l'ester obtenu.
- 2.2- Choisir des termes suivants ceux qui sont convenables pour caractériser cette réaction : athermique, endothermique, totale, lente et rapide.
- 2.3- Vérifier si le mélange initial des réactifs est stœchiométrique.
- 2.4- Déterminer le rendement de cette réaction.
- 2.5- On réalise les trois mélanges suivants :

Mélange	Rendement de la
	réaction à l'équilibre
Mélange 1 : 0,2 mol d'acide méthanoïque + 0,2 mol de butan-1-ol	R_1
Mélange 2 : 0,2 mol d'acide méthanoïque + 0,2 mol de butan-1-ol + quelques	R_2
gouttes d'acide sulfurique concentré	102
Mélange 3 : 0,4 mol d'acide méthanoïque + 0,4 mol de butan-1-ol	R_3

Comparer R₁, R₂ et R₃. Justifier.

Troisième exercice (7 points) Acide faible et base forte

On dispose, au laboratoire, de deux solutions aqueuses :

- Une solution (S₁) d'acide éthanoïque CH₃COOH de concentration molaire $C_1 = 5,0.10^{-3}$ mol.L⁻¹;
- Une solution (S₂) d'hydroxyde de sodium (Na⁺ + HO⁻) de concentration molaire $C_2 = 6.0.10^{-3}$ mol.L⁻¹.

Le but de cet exercice est de déterminer le pK_a du couple CH₃COOH / CH₃COO et d'étudier la réaction entre un acide faible et une base forte.

Donnée:

Produit ionique de l'eau : $K_e = 1,0.10^{-14}$.

Matériel disponible

Fioles jaugées : 100, 200 et 500 mL
 Agitateur magnétique et son barreau
 Pipettes jaugées : 5, 10 et 20 mL
 Burettes graduées : 25 et 50 mL

Béchers: 100, 200 et 500 mL - Eprouvettes graduées: 50, 100 et 250 mL

1- Détermination du pK_a du couple CH₃COOH / CH₃COO⁻

La solution (S_1) a été préparée en diluant une solution (S_0) de concentration initiale $C_0 = 5,0.10^{-1}$ mol.L⁻¹. La mesure du pH de la solution (S_1) diluée donne une valeur de 3,55.

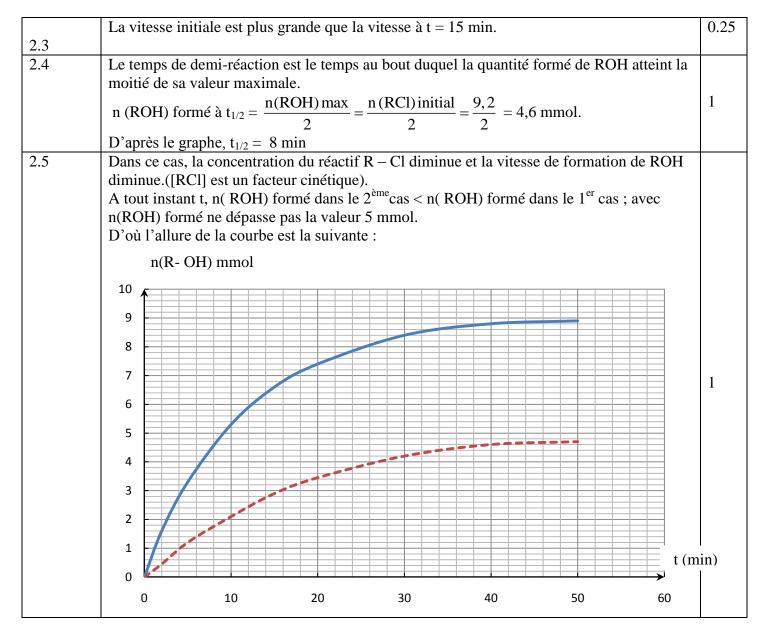
- 1.1- Choisir, en justifiant, de la liste ci-dessus, la verrerie indispensable à la préparation de la solution (S_1) .
- 1.2- Ecrire l'équation de la réaction entre l'acide éthanoïque et l'eau.
- 1.3- Montrer que le pKa du couple CH₃COOH / CH₃COO est égal à 4,78.

2- Etude de la réaction entre un acide faible et une base forte

On ajoute, progressivement, la solution acide (S_1) dans un bécher contenant un volume $V_2 = 20,0$ mL de la solution basique (S_2) en présence de quelques gouttes d'un indicateur coloré convenable. L'équation de la réaction qui a lieu est la suivante :

$$CH_3COOH + HO^- \rightarrow CH_3COO^- + H_2O$$

- 2.1- Justifier que cette réaction est totale.
- 2.2- Déterminer le volume V_E de la solution acide qu'il faut ajouter pour atteindre l'équivalence.
- 2.3- Choisir, en justifiant, des deux indicateurs suivants celui qui est convenable pour repérer l'équivalence.


Indicateur coloré	Couleur acide		Zone de virage		Couleur basique
Rouge de méthyle	Rouge	4,2		6,2	Jaune
Phénolphtaléine	Incolore	8,2		10	rose violacé

- 2.4- Indiquer la variation de la couleur du mélange à l'équivalence.
- 2.5- On considère le cas où le volume V₁ de la solution d'acide ajouté est inférieur à V_E.
 - 2.5.1- Préciser le réactif limitant.
 - 2.5.2- Etablir la relation liant le pH du mélange à C₁, V₁, V₂ et V_E
- 2.6- Déterminer le volume d'acide qu'il faut ajouter pour avoir un pH du mélange égal au pK_a du couple CH₃COOH / CH₃COO⁻.

أسس تصحيح مسابقة الكيمياء

Premier exercice (6 points) Cinétique d'une réaction d'hydrolyse

Question	Réponse	Note
1.1	La formule semi-développée de ce composé est : CH ₃ – CO – CH ₃ ; son nom systématique	0.5
	est : propanone.	
1.2	C'est un alcool tertiaire car le carbone fonctionnel est lié à 3 atomes de carbone.	0.5
1.3	Les formules semi-développées : $CH_3-CH_2-CH_2-CH_2-CH_3-CH_2-CH_2-CH_3-CH_3-CH_3-CH_3-CH_2-CH_2-CH_3$	0.75
2.1	La courbe est:	
	n(R- OH) mmol	
	10	
	9	
	8	
	7	
	6 A (15 min; 6,6 mmol	
	5	1
	4	
	3 B(0; 3,6 mmol	
	2	
	1 t (m	in)
	0 $t_{1/2}$ 10 20 30 40 50 60	
2.2	I (DOID	
2.2	La vitesse de formation de R – OH est: $v = \frac{d n (ROH)}{dt} à t$.	
	Elle est égale au coefficient directeur de la pente de la tangente à la courbe au point	
	d'abscisse 15 min.	1
	On choisit sur cette tangente deux points A et B; A (0; 3,6) et B (15; 6,6).	
	D'où, $v = \frac{6.6 - 3.6}{15 - 0} = 0.2 \text{ mmol.min}^{-1}$.	
	15-0	

Deuxième exercice (7points) L'acide méthanoïque

Question	Réponse	Note
1.1.1	Les couples sont: $HCOOH/HCOO^-$; HCO_3^-/CO_3^{2-} et $CO_2,H_2O/HCO_3^-$	
		0.75
1.1.2	L'espèce amphotère est : HCO ₃	0.25
1.1.3	Le nom de cette base est : ion méthanoate.	0.25
1.2	n(CO ₂) formé à la fin = n(CaCO ₃) initial = $\frac{m(CaCO_3)initial}{M(CaCO_3)} = \frac{0,245}{100} = 2,45.10^{-3} \text{ mol}$	
	D'après l'équation des gaz parfaits,	
	P(CO ₂) à la fin = $\frac{n(CO_2) \text{ formé} \times R \times T}{V} = \frac{2,45.10^{-3} \times 8,3 \times 298}{500.10^{-6}} = 121,19.10^2 \text{ Pa}$	1.25

	D'après le graphe, on remarque que la courbe (a) a dépassé cette valeur de la pression tandis que l'évolution de la pression dans la courbe (b) s'arrête avant cette valeur.	
2.1	Donc, la courbe (b) est convenable pour cette étude.	
2.1	L'équation de cette réaction est :	1
	$HCOOH + CH_3 - CH_2 - CH_2 - CH_2OH \neq HCOO - CH_2 - CH_2 - CH_2 - CH_3 + H_2O$	1
	Le nom de l'ester est: méthanoate de butyle.	
2.2	Cette réaction est athermique et lente.	0.5
2.3	$R_{acide} = n(acide) initial / 1 = \frac{m(acide) initiale}{M(acide)} = \frac{30}{46} = 0,65;$	1
	$R_{\text{alcool}} = \text{n(alcool) initial/1} = \frac{m(alcool) \text{initiale}}{M(alcool)} = \frac{\mu(alcool) \times V(alcool)}{M(alcool)} = \frac{38 \times 0.8}{74} = 0.41.$	1
	Le mélange n'est pas stechiométrique car : $R_{acide} \neq R_{alcool}$.	
2.4	Rendement de cette réaction :	
	$R = \frac{n(ester) \exp \text{ \'erimental}}{n(ester) \text{ th\'eorique}} = \frac{n_1}{n_2}$	1
	avec $n_1 = n(acide)$ initial $-n(acide restant) = 0.65 - 0.40 = 0.25$ mol	
	et $n_2 = n(réactif)$ limitant = 0,41 mol.	
	D'où $R = 0.61$ soit un rendement de 61% .	
2.5	$R_1 = R_2$ car l'acide sulfurique joue le rôle d'un catalyseur (rôle cinétique) et n'a pas d'effet	
	sur le rendement de la réaction.	1
	$R_1 = R_3$ car le mélange initial des deux réactifs est équimolaire dans les deux mélanges.	

Troisième exercice (7 points) Acide faible et base forte

Question	Réponse	Note
1.1	Dans une dilution, n (soluté) apporté ne varie pas : C_o . $V_o = C_1$. V avec V_o est le volume à prélever de la solution initiale et V est le volume à préparer. D'où $\frac{V}{V_o} = \frac{C_o}{C_1} = \frac{0.5}{5.10^{-3}} = 100$; il faut choisir une pipette jaugée de 5 mL et une fiole jaugée de 500 mL (et un bécher pour y mettre l'échantillon de la solution S_o)	1
1.2	L'équation de cette réaction est : CH ₃ COOH + H ₂ O CH ₃ COO [−] + H ₃ O ⁺	0.5
1.3	$CH_{3}COOH + H_{2}O \rightleftarrows CH_{3}COO^{-} + H_{3}O^{+}$ Solution obtenue $C_{1} - x$ excès x x $Avec \ x = [H_{3}O^{+}] = 10^{-pH} = 10^{-3,55} = 2,8.10^{-4} \text{ mol.L}^{-1}$ $La \ constante \ d'acidité \ K_{a} = \frac{[H_{3}O^{+}].[CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{x^{2}}{C_{1} - x} = \frac{(2,8.10^{-4})^{2}}{5.10^{-3} - 2,8.10^{-4}} = 1,66.10^{-5}$ $D'où \ pK_{a} = -\log \ K_{a} = 4,78.$	1
2.1	Constante de cette réaction : $K_r = 10^{pK_e - pK_a(CH_3COOH/CH_3COO^-)} = 10^{14-4,78} > 10^4$; donc cette réaction est totale.	0.75

2.2	A l'équivalence : n (CH ₃ COOH) ajouté = n (HO ⁻) initial dans le bécher	
	$C_1. V_E = C_2.V_2 ; V_E = \frac{C_2.V_2}{V_1} = \frac{6.10^{-3}.20}{5.10^{-3}} = 24 \text{ mL}.$	0.75
	V_1 5.10 ⁻³	
2.3	A l'équivalence, le milieu est basique (présence de Na ⁺ , CH ₃ COO ⁻ et H ₂ O). l'indicateur	0.5
2.4	convenable est la phénolphtaléine car sa zone de virage se trouve dans le domaine basique.	0.5
2.4	A l'équivalence, le mélange passe du rose violacé à l'incolore.	0.5
2.5.1	Comme $V_1 < V_E$, le réactif limitant est le réactif ajouté ; c'est l'acide éthanoïque.	0.5
2.5.2	Le pH du mélange est imposé par la base la plus forte : ion OH	
	$[OH^{-}] = \frac{n(HO^{-})initial - n(HO^{-})r\acute{e}agissant}{V_{1} + V_{2}} = \frac{n(HO^{-})initial - n(CH_{3}COOH)ajout\acute{e}}{V_{1} + V_{2}}$	
	$ V_1 + V_2 = \frac{V_1 + V_2}{V_1 + V_2} $	0.75
	Avec n (HO $^-$) initial = $C_2 \cdot V_2 = C_1 \cdot V_E$.	0.73
	D'où pH = 14 + log $\frac{C_1(V_E - V_1)}{V_1 + V_2}$	
2.6	Pour avoir un pH égal au pK _a du couple CH ₃ COOH / CH ₃ COO ⁻ , il faut que :	
	$[CH_3COOH] = [CH_3COO^-].$	
	$CH_3COOH + HO^- \rightarrow CH_3COO^- + H_2O$	
	Etat initial C_1 . $V(ajouté)$ C_2 . V_2 - solvant	0.75
	Etat initial C_1 . $V(ajout\acute{e})$ C_2 . V_2 - solvant Solution obtenue C_1 . $V(ajout\acute{e})$ - C_2 . V_2 0 C_2 . V_2	
	D'où : C_1 . $V(ajouté) - C_2$. $V_2 = C_2$. V_2 et $V(ajouté) = 2$. $\frac{C_2 \cdot V_2}{V_1} = 48$ mL.	