دورة 2013 العادية	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الغيزياء المدة ساعة	

This exam is formed of three obligatory exercises in two pages. Non- programmable calculators are allowed.

First exercise (7 points)

Converging lens

Consider a converging lens (L) of focal length f = 4cm and an object (AB) placed perpendicular to the optical axis of (L) as shown in the figure below. F represents the object focus of (L) and F' is its image focus.

- 1) O is the optical center of (L). Justify.
- 2) Determine the size of object (AB) and its distance d from (L).

3) Redraw the figure below on the graph paper using the same scale.

4)

- a) Complete, on the figure, the path of the particular ray (BI). Justify.
- **b**) Trace the path of another particular ray issued from B and incident on (L).
- c) Construct, using the above two rays, the image (A'B') of (AB).
- **d**) Specify the nature of the image (A'B').
- e) Determine the size of the image A'B'.
- 5) (A'B') is obtained clearly on a screen (E). Determine the distance d' between (L) and (E).

Second exercise (7 points)

Water heater

A water heater is formed of a water reservoir equipped with a resistor (D) of resistance R.

I) Determination of R

- 1) The resistor (D) transforms the electric energy received into another form of energy. Give the name of this form of energy.
- 2) The characteristic current-voltage of the resistor (D) is one of the two adjacent graphs (figures a and b).
 - a) The graph of figure (a) does not correspond to the characteristic of (D). Justify.
 - **b**) Show, using the graph (b), that $R = 50 \Omega$.

II) Consumption of the water heater

The water heater functions normally under an alternating sinusoidal voltage of effective value U=220 V.

1) Show that the expression of the electrical power consumed by the water heater is given by: $P = \frac{U^2}{R}$.

Deduce the value of P = 968 W.

- 2) Calculate, in kWh, the electrical energy consumed by the water heater during 5 hours of functioning.
- 3) The water heater functions for 15 days in a month at an average rate of 5 hours daily.
 - a) Calculate the electrical energy consumed by the water heater during one month.
 - **b**) Deduce the monthly amount to be paid by the consumer knowing that the average cost of each kWh is 100 L.L

Third exercise (6 points)Determination of the density of a liquid

The aim of this exercise is to determine the density ρ_L of a liquid (L). For this purpose, we consider a solid (S) of mass m and several liquids of different densities.

- 1) (S) floats on the surface of one of these liquids of density ρ .
 - a) Give the name of each of the two forces acting on (S). Indicate, for each of these two forces, whether it is a contact force or a force acting from a distance.
 - **b**) Write the condition of equilibrium of (S).
 - c) Deduce the expression of m in terms of ρ and the immersed volume V_i of (S).
- 2) As the liquid is changed, the density ρ varies and the immersed volume V_i of (S) varies too. We draw the
 - graph of V_i as a function of $\frac{1}{\rho}$ (curve below).

- a) Show that the slope of the obtained curve represents the mass m of (S).
- **b**) In the case of the liquid (L), $V_i = 100 \text{ cm}^3$. Determine then the density ρ_L of (L).

First exercise (7 points)

Parts of Q.	Answer key	Note
1	O is the optical center since it is the point of intersection between the optical axis and the lens.	0.5
2	$AB = 2 \times 2 = 4$ cm. (0.5) $d = 6 \times 2 = 12$ cm. (0.5)	1
3	Reproduction.	0.5
4. a	Trace of the 1^{st} ray. (0.5) Since the incident ray is parallel to the optical axis of the converging lens, then it emerges passing through the image focus F' (0.5)	1
4. b	Trace of the 2 nd ray (passing through O or through F).	1
4. c	Construction of the image. $(trace 0.5) + (Explanation 0.5)$	1
4.d	Nature: (A'B') is a real image (0.5) Since it is formed after the lens. (0.5)	1
4. e	$A'B' = 1 \times 2 = 2$ cm.	0.5
5	$d' = 3 \times 2 = 6$ cm.	0.5

Second exercise (7 points)

Parts of Q.	Answer key	Note
I.1)	Thermal energy (or heat)	0.5
I.2.a)	Since the obtained curve is not a straight line passing through the origin.	1
I.2.b)	Using Ohm's law : $U = R \times I (0.5)$	1
	$\Rightarrow \mathbf{R} = \mathbf{U} / \mathbf{I} = 5 / 0.1 = 50 \ \Omega \ (0.5)$	1
II.1)	$P = U \times I$ (0.25) and $U = R \times I$ (0.25) then $I = U/R$ therefore $P = U^2/R$. (0.5)	1.5
	$P = (220 \times 220) / 50 = 968 \text{ W.} (0.5)$	
II.2)	$\mathbf{E} = \mathbf{P} \times \mathbf{t} \ (0.5)$	1.5
	$E = 0,968 \text{ kW} \times 5 \text{ h} = 4,84 \text{ kWh} (1)$	
II.3.a)	Monthly consumed energy:	
	$E_1 = 15 \times E = 15 \times 4, 84 = 72,6 \text{ kWh}.$	1
II.3.b)	Monthly cost: $72,6 \times 100 = 7260 \text{ LL} (0.5)$	0.5

Third exercise (6 points)

Parts of Q. N°	Answer key	Notes
1. a)	\vec{W} : weight of the body(0.5)force acting from a distance(0.5) \vec{F} : Archimedes up-thrust(0.5)contact force(0.5)	2
1.b)	At the equilibrium : $\vec{W} + \vec{F} = \vec{0}$ or \vec{W} and \vec{F} have same line of action - opposite direction and same magnitude.	0.75
1.c)	W = m×g (0.5) et F = $\rho \times V_i \times g$ (0.5) then m×g = $\rho \times V_i \times g$ Thus : m= $\rho \times V_i$ (0.5)	1.5
2.a)	Slope = $\frac{V_i}{\frac{1}{\rho}} = V_i \times \rho = m$	0.75
2.b)	For V _i = 100 cm ³ we find graphically $\frac{1}{\rho} = 0.5$ cm ³ /g (0.5) then $\rho = 2$ g/cm ³ . (0.5)	1