المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم -١-المدة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

In the space referred to an orthonormal system $(0; \vec{i}, \vec{j}, \vec{k})$, consider the points E(2; 2; 0) and F(0; 0; -2), the plane (P) with equation x+y+z-1=0 and the line (d) with parametric equations $\begin{cases} x=-t-1\\ y=t+5 \ (t\in \mathbb{R}).\\ z=3t+9 \end{cases}$

Denote by H the orthogonal projection of E on (P)

1)

- **a-** Verify that E is a point on (d).
- **b-** Determine the coordinates of A ,the intersection point of (d) and (P).

1)

- a-Verify that F is the symmetric of E with respect to (P). b-Write a system of parametric equations of the line (Δ) bisector of the angle EAF.
- 2) Let (Q) be the plane containing F and parallel to (P) and K the intersection point of (d) and the plane (Q).
 - a) Write an equation of the plane (Q).
 - b) Verify that A is the midpoint of [EK].

II- (4points)

 U_1 and U_2 are two boxes so that :

U₁ contains 10 balls: 6 red and 4 black.

U₂ contains 10 balls: 5 red and 5 black.

A die numbered 1 through 6 is rolled.

- . If this die shows 1 or 2, then two balls are randomly selected at a time from the box U_1 .
- . Otherwise , two balls are randomly selected one after another with replacement from the box U $_{\rm 2}$ Consider the following events :

 U_1 :"The selected box is U_1 ."

 U_2 : "The selected box is U_2 ."

R:"The selected balls are red".

- 1) calculate $P(R \mid U_1), P(R \cap U_1)$
- 2) verify that $P(R) = \frac{5}{18}$.
- 3) The two balls selected are red, calculate the probability that they come from U_1 .
- 4) Let X be the random variable that is equal to the number of the red balls selected.

- a) verify that $P(X=1) = \frac{23}{45}$.
- b) Determine the probability distribution of X

III- (4points)

The complex plane is referred to an orthonormal system $(0; \vec{u}, \vec{v})$.

Denote by A, Band C the points with respective affixes $z_A = 2-3i$, $z_B = i$ et $z_C = 6-i$.

1) Calculate $\frac{z_B - z_A}{z_C - z_A}$. Deduce the nature of the triangle ABC.

For each point M with affix distinct from i, we associate the point M' with affix:

$$z' = \frac{i(z-2+3i)}{z-i}.$$

- 2) If z=1-i, determine the exponential form of z'.
- 3)a- If z'=2i, find the algebraic form of z .(Denote by E the image point of z obtained).
 - b- Verify that E is a point on the line (AB).
- 4)Prove that if M moves on the perpendicular bissetor of [AB] then M' moves on a circle with center O and a radius to be detremined.

IV- (8points)

Consider the function defined over \mathbb{R} by : $f(x) = \ln(e^{2x} - e^x + 1) - 1$. (C) is the representative curve of f in an orthonormal system (0; $\vec{1}$, \vec{j}).

- 1) Determine the limit of f at $-\infty$ and deduce an asymptote to (C).
- 2) a.Show that the line (D) with equation y=2x-1 is an asymptote to (C). b.Discuss according to x, the relative position of (C) and (D).
- 3) Calculate f'(x) and set up the table of variations of f.
- 4) Determine the coordinates of A, where the tangent to (C) is parallel to (D).
- **5**) Draw (D) and (C).
- 6) a) For $x \ge 0$, prove that f has an inverse function g whose domain of definition should be determined.
- 7) Let (G) be the representative curve of g and (D') its asymptote. Draw (G) and (D') in the same system as that of (C).
- 8) Suppose that the area of the region bounded by (C), (x'Ox),(y'Oy) is A. Calculate, in terms of A, the area of the region bounded by (G), its asymptote and the y-axis.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم - ١ -المدّة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١ وحتى صدور المناهج المطوّرة)

QI		Notes
1.a	E is a point on (d) for $t=-3$	0,5
1.b	A(3;1;-3)	0,5
2.a	$\overrightarrow{EF}(-2,-2,-2) \Rightarrow (EF) \perp (p)$	1
	Let H(1,1,-1) be the midpoint of [EF] and verify that H is on (P).	
2.b	$\int x = -2m + 3$	0.5
	$(AH): \begin{cases} x = -2m + 3 \\ y = 1 \\ z = 2m - 3 \end{cases}$ the perpendicular bisector of [EF]	
	z = 2m - 3 the perpendicular bisector of [EF]	
3.a	(Q): $x+y+z+2=0$	0.5
	$K(4,0,-6) = (d) \cap (Q)$ and A is the midpoint of [EK].	1
3.b		

QII					Notes
1	$P(R/U_1) = \frac{C_6^2}{C_{10}^2} = \frac{1}{3} P(R \cap U_1) = P(R/U_1) \times P(U_1) = \frac{1}{9}$				
2	$P(R) = P(R \cap U_1) + P(R \cap U_2) = \frac{1}{9} + \frac{5}{10} \times \frac{5}{10} \times \frac{2}{3} = \frac{5}{18}$				
3	$p\left(U_1/_R\right) = \frac{P(R \cap U_1)}{P(R)} = \frac{2}{5}$				
4	$P(X=1) = \left(\frac{6\times4}{C_{10}^2}\right) \times \frac{1}{3} + 2\left(\frac{5}{10} \times \frac{5}{10} \times \frac{2}{3}\right) = \frac{23}{45}$				
5	$X = x_i$	0	1	2	1
	$p(X = x_i)$	$\frac{19}{90}$	$\frac{23}{45}$	$\frac{5}{18}$	
	p(X=0)=1-P(X=1)-P(X=2)				

QIII		Notes
1	ABC is a right isosceles triangle.	1
2	$z' = e^{\frac{-\pi}{2}i}$	0,5
3.a	$z_{E} = -2 + 5i$	0,5
3.b	$\frac{z_A - z_E}{z_B - z_E} = 2$ then A,E and B are collinear.	0,5
4.a	$ z' = \frac{ i z - z_A }{ z - z_B }$, then OM'= $\frac{AM}{BM}$	0,5
4.b	OM'=1, then M' is on the circle with center O and radius 1	1

QIV		Notes	
1	$\lim_{x \to -\infty} f(x) = -1$ then y=-1 is a horizontal asymptote.	0.5	
2.a	$\lim_{x \to +\infty} (f(x) - 2x + 1) = 0 \text{ then } y = 2x - 1 \text{ is on O.Asymptote }.$	1	
2.b	si x<0 then (C) is above (D) si x>0 then (C) is below (D) si x=0 (C) intersects (D)	1	
3	$f'(x) = \frac{e^{x}(2e^{x} - 1)}{e^{2x} - e^{x} + 1}$		
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5	
5	f'(x) = 2 then A(ln2; ln3 - 1)	1	
6.a	For $x \ge 0$, f defined ,continuous and strictly increasing then f has an inverse function g and $D_g = [-1; +\infty[$	0,5	
6.b	On the figure.	1	
7	Because of the symetry with respect to $y=x$ then $Area = A - (area of the region bounded by (D') and the coordinates axes). Then Area = A - area of the triangle bounded by the coordinates axes = A - 0.25.$	1	